【摘 要】
:
黏弹-塑性岩体中,隧道的支护反力会随时间增加,致使塑性区内已屈服围岩的应力状态从屈服面上回到屈服面以内.因此,研究隧道围岩与支护结构相互作用的长期力学特性时须先弄清其应力路径.考虑应力路径影响,基于广义Kelvin流变模型和Mohr-Coulomb强度准则,给出深埋隧道黏弹-塑性围岩与支护相互作用的应力、应变及位移的简化计算方法.将高地应力软岩隧道的各种“抗让结合”支护技术归纳为“先让后抗”、“边让边抗”、“先控再让后抗”3类,分别分析3类支护措施对围岩应力路径的影响,并对比研究不同支护措施下隧道黏弹-塑
【机 构】
:
宁波大学岩石力学研究所,浙江宁波315211;绍兴文理学院土木工程学院 浙江绍兴312000;宁波大学岩石力学研究所,浙江宁波315211;同济大学土木工程学院,上海200092
论文部分内容阅读
黏弹-塑性岩体中,隧道的支护反力会随时间增加,致使塑性区内已屈服围岩的应力状态从屈服面上回到屈服面以内.因此,研究隧道围岩与支护结构相互作用的长期力学特性时须先弄清其应力路径.考虑应力路径影响,基于广义Kelvin流变模型和Mohr-Coulomb强度准则,给出深埋隧道黏弹-塑性围岩与支护相互作用的应力、应变及位移的简化计算方法.将高地应力软岩隧道的各种“抗让结合”支护技术归纳为“先让后抗”、“边让边抗”、“先控再让后抗”3类,分别分析3类支护措施对围岩应力路径的影响,并对比研究不同支护措施下隧道黏弹-塑性围岩的变形及支护反力.结果 表明,考虑应力路径后计算得到的围岩位移更大.在相同的位移释放量、相同的衬砌支护刚度条件下,采用“先让后抗”的措施,围岩初期变形速率非常大,施加永久支护后,后期增长的支护反力也最大.在高地应力、变形严重的条件(例如初始地应力超过20 MPa)下采用“先控再让后抗”措施是最合适的.隧道开挖后立即施作长锚杆主动支护围岩,不仅可以控制围岩在第一阶段的变形速率,提高第一阶段围岩的稳定性,还可以大幅降低第二阶段永久衬砌的支护力,提高第二阶段衬砌结构的稳定性.在地应力不高、变形不严重的条件下(例如初始地应力低于10 MPa)采用“先让后抗”的措施就可以较好地控制围岩变形,不必采用“先控再让后抗”措施.而“边让边抗”措施适用于2种情况之间(例如初始地应力为10~20 MPa).此外,黏滞系数较小(较软弱)的围岩开挖后变形速率较大,例如当黏滞系数η分别取2×109和1×1010 Pa·d时,采用“先控再让后抗”措施后围岩初期变形速率分别为17.6和3.5 cm/d.因此,黏滞系数较小(较软弱)的围岩在开挖后必须立即施加较大的支护反力以控制围岩变形速率.
其他文献
稠油油藏经过多轮次蒸汽吞吐后,井间存在热连通和高耗热通道,热效率低,开发效果差.化学堵调降黏复合驱作为一种绿色低碳的有效开采接替技术,研究其复合驱油机理对于指导油田现场项目实施具有重要意义.针对试验区油藏特征,筛选化学剂,构建化学堵调降黏复合驱油体系,通过室内实验研究稠油化学堵调降黏复合驱油体系的驱油机理,结果表明高黏度堵调剂降低油水流度比,提高小孔径孔隙剩余油的动用程度,有效抑制黏性指进,起到改善流度、调整流场的作用;降黏剂吸附在原油表面,改善油相流动能力,提高驱油效率,同时乳液液滴卡堵相应尺寸喉道,提
渗透降黏驱油剂是一种聚合物型降黏剂,具有优异的水相增黏和油相降黏作用,能抑制水窜,有效地提高水驱稠油采收率.从介观和微观2个层面对渗透降黏驱油剂提高采收率的机理开展了分析和探索,CT扫描驱油实验研究发现,渗透降黏驱油剂在模拟非均质油藏驱油过程中,出现了纯油相和乳液相2个采油峰值,实现了高、低渗透层的均衡动用.微观刻蚀模型驱替实验结果表明,渗透降黏驱油剂在驱替过程中可与稠油形成多种类型流体形态,并在油藏驱油过程中发挥不同作用:驱替初期形成油包水(W/O)乳液扩大波及体积;继续注入可变W/O型乳液为水包油包水
为了分析隧道拱肩Ⅰ/Ⅱ复合型裂纹在爆炸荷载下的起裂及扩展规律,采用带有拱肩裂纹的岩石隧道模型(rock tunnel modelwith a spandrelcrack,RTMSC)进行了爆炸试验.试验中采用裂纹扩展计(crack propagation gauge,CPG)及应变片测试裂纹的起裂、扩展及止裂规律.数值模拟采用AUTODYN软件.裂纹尖端的动态应力强度因子kdⅠ(t)和kdⅡ(t) (SIFs)的计算采用ABAQUS软件.结果 表明:(1)裂纹在扩展过程中,在扩展路径上出现了拐点,同时在拐