论文部分内容阅读
针对人脑识别技术中特征抽取的几种经典方法在应用上的特点以及存在的问题,提出了从代数学的角度对其进行比较分析。结果表明:主成分分析、奇异值分解是基于矩阵变换的特征抽取方法;独立主元分析、非负矩阵分解是基于矩阵分解的特征抽取方法。在实际应用中,基于矩阵分解的算法与基于矩阵变换的方法相比,虽然需要更多的特征抽取时间,但具有更好的识别性能。通过基于ORL和YALE人脸库上的数值实验,证明了所得结论。