论文部分内容阅读
大量随机冲击负荷(炼钢厂、轧钢厂)接入系统给负荷预测造成困难,使得短期负荷预测精度下降。首先就冲击负荷地区的负荷特征进行分析,找出影响负荷预测精度的原因,提出利用小波变换对负荷序列进行多尺度分解,得到在不同频段下负荷予序列,重点针对各负荷分量不同特点,建立含不同输入量的贝叶斯神经网络预测模型,再将预测结果进行小波重构,从而得出最后预测结果。再与另两种模型进行对比,结果表明该方法能提高冲击负荷地区的短期负荷预测精度。