论文部分内容阅读
Magnaporthe oryzae is a model for plant pathogenic filamentous fungi. We have assembled a simple sequence repeat (SSR)-based physical map of the species, using in silico sequence data. A set of 120 SSR markers was developed from the genomic sequence of the reference isolate 70-15. These markers were readily amplified from the genomic DNA of other isolates, and high levels of allelic variation characterised the parental isolates of the two crosses tested. All the markers were locatable to one of the seven M. oryzae chromosomes. An SSR-based physical in silico map was constructed, and pre-existing SSR and RFLP loci were integrated into the map, along with 23 Avr (avirulence) genes and two other genes of importance to the plant/pathogen interaction. This map provides a platform for population genetics and functional genomics studies in the model pathogen, and even in other evolu- tionally related pathogens.
We have assembled a simple sequence repeat (SSR) -based physical map of the species, using in silico sequence data. A set of 120 SSR markers was developed from the genomic sequence of the reference isolate 70-15. All markers of locus to one of the seven M. oryzae chromosomes. An SSR-based physical in silico map was constructed, and pre-existing SSR and RFLP loci were integrated into the map, along with 23 Avr (avirulence) genes and two other genes of importance to the plant / pathogen interaction. This map provides a platform for population genetics and functional genomics studies in the model pathogen, and even in other evolu- tionally related pathogens.