论文部分内容阅读
The freshly prepared water-wet amidoximated bacterial cellulose(Am-BC) serves as an effective nanoreactor to synthesis zinc oxide nanoparticles by in situ polyol method. The obtained ZnO/Am-BC nanocomposites have been characterized by field emission scanning electron microscopy(FE-SEM), X-ray diffraction(XRD), Fourier transformed infrared spectroscopy(FTIR) and thermogravimetric analysis(TGA). The influence of the zinc acetate concentration on the morphologies and size of ZnO nanoparticles and the possible formation mechanism were discussed. The results indicated that uniform ZnO nanoparticles were homogeneously anchored on the Am-BC nanofibers through strong interaction between the hydroxyl and amino groups of Am-BC and ZnO nanoparticles. The loading content of ZnO nanoparticles is higher using Am-BC as a template than using the unmodified bacterial cellulose. The resultant nanocomposite synthesized at 0.05 wt% shows a high photocatalytic activity(92%) in the degradation of methyl orange.
The freshly prepared water-wet amidoximated bacterial cellulose (Am-BC) serves as an effective nanoreactor to synthesis zinc oxide nanoparticles by in situ polyol method. The resulting ZnO / Am-BC nanocomposites have been by field emission scanning electron microscopy (FE- SEM), X-ray diffraction (XRD), Fourier transformed infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). The influence of the zinc acetate concentration on the morphologies and size of ZnO nanoparticles and the possible formation mechanism were discussed. indicated that uniform ZnO nanoparticles were homogeneously anchored on the Am-BC nanofibers through strong interaction between the hydroxyl and amino groups of Am-BC and ZnO nanoparticles. The loading content of ZnO nanoparticles is higher using Am-BC as a template than using the unmodified bacterial cellulose. The resultant nanocomposite synthesized at 0.05 wt% shows a high photocatalytic activity (92%) in the degradation of methyl ora nge.