论文部分内容阅读
<正> 设V~(n+p)(K)是常曲率为K(K≠0)的(n+p)维空间形式,M~n是n维连通的Riemmann流形。M~n在V~(n+p)(K)中极小的充要条件是M~n的广义Gauss映照为调和映照,本文利用此结果,通过对Gauss映照能量的Laplacian作下界估计,得到极小子流形的一些性质。文中出现的有关概念和记号及指标约定,请参考文[1~4]。定理1 设S~(n+p)(K)是正曲率的空间形式,M~n是等距浸入在S~(n+p)(K)中的紧致极小的