论文部分内容阅读
This paper is concerned with the problems of H-two filtering for discrete-time Markovian jump linear systems subject to logarithmic quantization. We assume that only the output of the system is available, and therefore the mode information is nonaccessible. In this paper, a mode-independent quantized H-two filter is designed such that filter error system is stochastically stable. To this end, sufficient conditions for the existence of an upper bound of H-two norm are presented in terms of linear matrix inequalities. Considering uncertainty of system matrices, a robust H-two filter is designed. The proposed method is also applicable to cover the case where the transition probability matrix is not exactly known but belongs to a given polytope. Finally, numerical examples are provided to demonstrate the effectiveness of the proposed approach.
This paper is concerned with the problems of H-two filtering for discrete-time Markovian jump linear systems subject to logarithmic quantization. We assume that only the output of the system is available, and therefore the mode information is nonaccessible. In this paper, a mode-independent quantized H-two filter is designed such that filter error system is stochastically stable. To this end, sufficient conditions for the existence of an upper bound of H-two norm are presented in terms of linear matrix inequalities. Considering uncertainty of system The proposed method is also available to cover the case where the transition probability matrix is not exactly known but but to to give a given polytope. Finally, numerical examples are provided to demonstrate the effectiveness of the proposed approach.