论文部分内容阅读
压杆的稳定问题,通常可用欧拉公式求解。但是,这只是对等截面的初始状态是笔直的压杆,并且受单纯的轴向负荷时才能适用。否则,欧拉公式的使用将涉及较为复杂的数学运算。拉普拉斯变换和贝塞尔函数提供了对不等截面压杆的精确求解方法,然而这些方法通常要进行一定范围的试算和误差校核,处理起来比较繁杂。另一种途径是建立在能量法的基础上,用来计算不等截面复杂负荷,或具有固定偏心率的变截面压杆则是较为简便的。
Pressure bar stability problems, usually Euler formula can be solved. However, this is only the straight section of the equal section of the initial pressure bar, and is subject to a simple axial load can be applied. Otherwise, the Euler formula will involve more complex mathematical operations. Laplace transform and Bessel functions provide exact solutions to unequal cross-section struts. However, these methods usually require a range of trial calculations and error checking to be complicated to process. Another approach is to build on the basis of the energy law, to calculate the unequal cross-section of the complex load, or with a variable eccentricity of the cross-sectional pressure bar is more simple.