一道角平分线问题的变式拓展

来源 :初中生世界 | 被引量 : 0次 | 上传用户:seeya
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
苏科版《数学》七年级下册第29页例2:如图1,△ABC的角平分线BD,CE相交于点P,∠A=70°,求∠BPC的度数.今天我们就从这道题着手,探究例题的解题结论在问题变式后的有效应用,并通过例题的进一步拓展,达到解一题而通一类,举一反三的高效解题目的.一、例题的解题结论【解析】利用三角形内角和性质得∠ABC+∠ACB的度数,根据角平分线性质得∠1+∠2的度数,然后根据三角形内角 Example 2: As shown in Fig. 1, the angle bisector BD of ABC, CE intersects at point P, ∠A = 70 °, and the degree of BPC is obtained. From today This question starts with an exploration of the effective application of the solution to the problem of the problem after the variation of the problem and through the further expansion of the example to achieve the purpose of solving one problem through one and giving top priority to solving the problem. 【Resolution】 Using the angle and the nature of the triangle ∠ ABC + ∠ ACB degrees, according to the nature of the angle bisector obtained ∠ 1 + ∠ 2 degree, and then according to the triangle angle
其他文献
推理与证明是数学的基本思维过程,也是人们学习和生活中经常使用的思维方式.证明方法是从思维活动中抽象出来的,是由数学思维过程凝缩而成的.现结合中考试题举例说明,以供参
在生活中我们处处用到数学,比如我们几点起床,家离学校多远,选用何种交通工具才能及时赶到学校……数学来源于生活,能更好地为我们服务.当然,对于数学中许多问题,我们也能用
在一个平面内有两条平行线l1、l2,两条线上分别有两点A、B.在这个平面内有另外两点P1、P2,连接P1P2,P1A,P2B,求P1A与l1的夹角∠1,P2B与l2的夹角∠2,∠P1,∠P2的关系.下面附上
荔枝是多年生果树,嫁接植株需培育4—5年以后才开始结实。用常规方法选配优良嫁接组合,通常需10年以上,育种周期较长。前人对苹果的研究认为:可以根据由砧木根系进入接穗的
至此,我们已经学习了很多代数知识上的重要概念和方法,在即将进入八年级的学习阶段前,有必要进行回顾,加深对它们的理解.一、数轴数轴是规定了原点、正方向和单位长度的一条
在说明三角形内角和为180°时,老师让我们作平行线把三个内角“搬”到一起(如图1),利用平角的定义,得到了“三角形内角和等于180°”这个结论.也可以利用对折三角形的方法将
在七年级的数学学习中,我们学习了很多重要的几何概念、定理,它们都是进一步学习几何知识的基础,因此我们有必要进行一番梳理和总结.一、图形的运动图形的运动方式有平移、翻
一、根据题意确定字母指数的值若合并同类项的结果是一个单项式则可确定多项式中的各项都是同类项,再根据每个字母的指数都相等确定待求次数的值.例1若单项式x4yn与-2x2m+3y3
(一)前言茶树原生于亚热带大森林里,在长期系统发育过程中,形成了喜温、喜湿、耐荫生态遗传特性。因而,创造一个适于茶树生长的生态环境,越来越显得重要了。建国以来,我省先
方程与不等式是现实世界中相等关系和不等关系的数学表示形式,它们不仅是现阶段学习的重点内容,而且也是同学们后继学习的基础.七年级阶段我们已学习一元一次方程、二元一次