论文部分内容阅读
作为典型的模式识别任务,人脸识别有着巨大的实际应用价值与市场前景。理想环境下的人脸识别已经取得不俗成绩,然而,当所处环境变化(如姿态变换、夸张表情、阴阳脸、分辨率较低)时,识别难度增加,效果也急剧变差。与此同时,现有大多数方法无法实时(在线)完成人脸识别任务,这也限制了人脸识别技术的应用。为此,该文以深度神经网络为框架,使用大规模人脸库构造了一种新型实用的多层网络应用于大规模的人脸识别任务中并提出了一种新的搜索策略。实验结果表明,该套方法实时性好,识别率较高,是人脸识别较为理想的方案。