A forecasting and forewarning model for methane hazard in working face of coal mine based on LS-SVM

来源 :Journal of China University of Mining & Technology | 被引量 : 0次 | 上传用户:seryanny
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
To improve the precision and reliability in predicting methane hazard in working face of coal mine, we have proposed a forecasting and forewarning model for methane hazard based on the least square support vector (LS-SVM) multi-classifier and regression machine. For the forecasting model, the methane concentration can be considered as a nonlinear time series and the time series analysis method is adopted to predict the change in methane concentration using LS-SVM regression. For the forewarning model, which is based on the forecasting results, by the multi-classification method of LS-SVM, the methane hazard was identified to four grades: normal, attention, warning and danger. According to the forewarning results, corresponding measures are taken. The model was used to forecast and forewarn the K9 working face. The results obtained by LS-SVM regression show that the forecast- ing have a high precision and forewarning results based on a LS-SVM multi-classifier are credible. Therefore, it is an effective model building method for continuous prediction of methane concentration and hazard forewarning in working face. To improve the precision and reliability in predicting methane hazard in working face of coal mine, we have proposed a forecasting and forewarning model for methane hazard based on the least square support vector (LS-SVM) multi-classifier and regression machine. model, the methane concentration can be considered as a nonlinear time series and the time series analysis method is adopted to predict the change in methane concentration using LS-SVM regression. According to the forewarning results, the corresponding measures are taken. The model was used to forecast and forewarn the K9 working face. The-classification method of LS-SVM, the methane hazard was identified to four grades: normal, attention, warning and danger. results obtained by LS-SVM regression show that the forecast- ing have a high precision and forewarning results based on a LS-SVM multi-classifier are credible. Therefore, it is an effective model building method for continuous prediction of methane concentration and hazard forewarning in working face.
其他文献
钙通道阻滞剂(CalciumChannelBlocker,CCB)自二十世纪60年代初期Fieckenstein最先发现CCB抗心绞痛作用到70年代CCB应用于高血压的治疗以来,CCB的研制和生产已取得重大进展,成为
本文引用179篇文献综述了枸杞子中的微量元素测定和多糖提取及多糖化学修饰新进展。提出了同时测定枸杞子、中草药、动物组织和生物体液中痕量砷和硒的氢化物发生原子荧光分
当前,我国社会主义现代化事业正在飞速发展,时代呼唤各类领导人才脱颖而出,但在实际工作中,我们对干部的开发和使用还存在着不尽合理与科学的地方,影响着干部潜能的发挥,有
在功能基因组研究中,插入诱变被广泛用于基因敲除。玉米Mutator转座子因其具有较高的转座活性常被用于构建大型玉米插入突变体库。本研究利用具有活性MuDR因子的玉米材料与优
江总书记指出:“要坚持实践是检验真理的唯一标准,在党的基本理论指导下,一切从实际出发,自觉地把思想认识从那些不合时宜的观念、做法和体制中解放出来,从对马克思主义错误的和教
近年来,开发各种制备粒径及形态可控的无机/高分子纳米微粒的方法已成为科技领域中的一大热点。人们发现,在凝胶内部微环境中生长的材料较之在溶液体系中制备的材料更易控制其
铀矿提纯和加工过程中会产生大量含铀废水,这些废水若不加以处理而直接排放,将会对环境及生物体造成很大危害。因此,含铀废水必须得到有效处理方可排放。与其他除铀方法相比,生物吸附法具有工艺简单、成本低、去除效率高、原料经济易得,后处理不易造成二次污染等优点而受到广泛关注。但现有的吸附剂存在诸如吸附量较低,机械性能差等缺点。因此,研制一种吸附量高,机械性能好的新型吸附剂具有重要意义。本课题制备了结冷胶负载
学位
天然产物是开发新药的重要原料宝库.据统计,目前临床治疗用药的一凌晨是来自天然产物及其衍生物.生物碱是一类重要的天然产物,大多数具有生理活性,是许多中草药及其药用植物
我国工农业快速发展的同时,大量有毒有害物质残留于环境中。由于环境基质的复杂性,且其中污染物浓度很低,用仪器分析检测前需要进行样品前处理工作,即对样品进行净化,对痕量目标分
纳米结构材料因其自身独特的物理化学性质已成为材料学研究的重点之一,而将具有丰富相态的溶致液晶模板与电化学沉积技术相结合制备纳米材料的方法受到了广泛的关注。本论文的