论文部分内容阅读
Metasurfaces have drawn signifi-cant attentions due to their superior capability in tailoring electromagnetic waves with a wide frequency range, from microwave to visible light. Recently, programmable metasurfaces have demonstrated the ability of manipulating the amplitude or phase of electromagnetic waves in a programmable manner in real time, which renders them especially appealing in the applications of wireless communications. In this paper, we present the fundamental prin-ciple of applying programmable metasurface as transmitter for wireless communications. Then, we establish a prototype system of meta-surface-based transmitter to conduct several experiments and measurements over the air, which practically demonstrate the feasibility of using programmable metasurfaces in future communication systems. By exploiting the dynamically controllable property of program-mable metasurface, the design, implementa-tion and experimental evaluation of the pro-posed metasurface-based wireless communica-tion system are presented with the prototype, which realizes single carrier quadrature phase shift keying (QPSK) transmission over the air. In the developed prototype, the phase of the reflected electromagnetic wave of programma-ble metasurface is directly manipulated in real time according to the baseband control signal, which achieves 2.048 Mbps data transfer rate with video streaming transmission over the air. In addition, experimental result is provided to compare the performance of the proposed metasurface-based architecture against the conventional one. With the slight increase of the transmit power by 5 dB, the same bit er-ror rate (BER) performance can be achieved as the conventional system in the absence of channel coding. Such a result is encouraging considering that the metasurface-based system has the advantages of low hardware cost and simple structure, thus leading to a promising new architecture for wireless communications.