论文部分内容阅读
根据位场理论,将观测曲面上测得的△T(或Za)视为位函数,代入偶层位公式的极限形式,求解出对应于△T(或Za)的等效偶层的磁化强度J(α,β,γ)。将J(α,β,γ,)代入偶层场强分量表达式 (α)/(α)n(1/r)dS 只要给定了方向u,就可得到△T沿该方向的一阶导数。将J(α,β,γ)代入(α)T/(α)x,(α)T/(α)y,(α)T/(α)z的积分表达式就能得到△T的二阶导数。因为使用的是二重积分形式的导数的精确表达式,它克服了空间域差商求导的致命弱点。特别是该方法能将起伏地形曲面上的场值向上延拓(包括曲化平)和求一阶(或二阶)导数两个转换过程集中在一个积分表达式中,一次计算完毕。
According to the field theory, △ T (or Za) measured on the observed surface is regarded as a bit function and substituted into the limit form of the formula of the even layer, and the magnetization of the equivalent dipole corresponding to ΔT (or Za) is solved J (α, β, γ). Substituting J (α, β, γ,) into the field strength component of the dipole (α) / (α) n (1 / r) dS As long as the direction u is given, Derivative. Integrating J (α, β, γ) into the integral expression of (α) T / (α) x, (α) T / (α) y, and (α) T / (α) Derivatives. Because of the exact expression of the derivative of the double integral form, it overcomes the fatal weakness of the spatial domain differentiator. In particular, this method can be extended to the topography of the terrain surface values (including the smooth level) and the first (or second order) derivative of the two conversion process is concentrated in an integral expression, a calculation is completed.