论文部分内容阅读
本文讨论二阶非线性微分方程(r(t)y′)′+a(t)y=F(t,y) (1)解的有界性与零解的稳定性问题,证明在一类简单条件下,(1)的解与线性齐次方程(r(t)y′)′+a(t)y=0 (2)的解具有相同类型的有界性质与稳定性.本文推广了[2,3]的相应工作.在[3]中令g(x(t))=y)(t),则[3]的方程包含于(1)中,且x(t)与y(t)具有相同的渐近性质. 现作如下的基本假设: