论文部分内容阅读
提出一种基于核函数方法的类内训练样本选择方法——核子类凸包样本选择法,并将其用于支持向量机。该样本选择方法通过迭代方法,逐一选择了那些经映射后"距离已选样本",并将其映射、生成"凸包最远的样本"。实验结果表明,该方法选择的少量样本使支持向量机获得了较高的识别比率,减少了存储需求,提高了分类速度。