论文部分内容阅读
二、单向可倾式夹具的角度换算在图1中,当KE=EO,则KE=EO=AF=K’G,证明空间斜面KABK’//EFG,即:DABC//EFG。把空间斜面EFG单独进行分析(图5),从E点引一直线垂直于FG,得交点H,连接OH,因为EO上OH,所以OH⊥FG。FG是空间斜面EFG与水平面OFG的相交线,W角就是空间斜面与水平面之间的法向两面角。如果OFG是定位基准面,则OF与OG是基准边。令∠OGF=L,L称为定向角,W称为定位角。由此可见,角度换算是从角度修正计算图中导出来的,FG是L和W的共同基准。α,β,L,W之间的关系如下:
Second, the one-way tilting fixture angle conversion In Figure 1, when KE = EO, then KE = EO = AF = K’G, prove space slope KABK ’// EFG, namely: DABC // EFG. The spatial bevel EFG analysis alone (Figure 5), from the point of E direct a straight line perpendicular to the FG, the intersection point H, connect OH, because the OH on the EO, so OH ⊥ FG. FG is the intersection of the space bevel EFG and the horizontal plane OFG, and the angle W is the normal dihedral angle between the space bevel and the horizontal plane. If OFG is a positioning datum, OF and OG are datum sides. Let ∠OGF = L, L is called the orientation angle, W is called the positioning angle. As can be seen, the angle conversion is derived from the angle correction calculation graph, and FG is the common reference for L and W. The relationship between α, β, L, W is as follows: