论文部分内容阅读
针对当前基于机器学习的Android恶意软件检测方法特征构建维度单一,难以全方位表征Android恶意软件行为特点的问题,文章提出一种融合软件行为特征、Android Manifest.xml文件结构特征和Android恶意软件分析经验特征的恶意软件检测方法。该方法提取Android应用的Dalvik操作码N-gram语义信息、系统敏感API、系统Intent、系统Category、敏感权限和相关经验特征,多方位表征Android恶意软件的行为并构建特征向量,采用基于XGBoost的集成学习算法构建