论文部分内容阅读
A new approach is presented herein to predict the failure of metallic materials. A failure criterion that caters for the effects of stress triaxiality and Lode parameter is proposed and it is applicable not only to metals with ēf > ef but also to metals with ēf ≤ ef , here ēf and ef are the two parameters defined as the true strains at stress triaxiality of η = 1/3 for Lode parameters of ξ = 1 (axisymmetric stress state) and ξ = 0 (plane strain state) respectively. Furthermore, only two laboratory tests such as smooth bar tension test and pure shear test are needed to calibrate the failure criterion. The present failure criterion is proved in good agreement with the test data for various metals under different loading conditions.“,”提出了一种预测金属材料失效的新方法,该失效准则考虑了应力三轴度和Lode角参数的影响。将金属材料分为 ēf>ef 和 ēf≤ef 两类,其中 ēf 和 ef 分别定义为应力三轴度η=1/3、Lode角参数ξ=1(轴对称应力状态)和应力三轴度η=1/3、Lode角参数ξ=0(平面应变状态)时的真实应变。另外只需要两个常见的实验(光滑圆杆拉伸试验和纯剪试验)数据就可以确定失效准则的参数值。将该新失效准则与文献中报道的诸多材料在不同加载条件下的实验数据进行对比,结果吻合较好。