论文部分内容阅读
提出了一种利用边缘信息的半模糊均值聚类的图像分割算法,它先用边缘检测和区域生长算法对图像进行一次预分割,确定聚类的初始参数,然后在这个基础上对“边缘”部分的点采用模糊聚类、非“边缘”部分使用分明聚类,避免了模糊聚类时初始参数设定的盲目性,减少了迭代时的计算量,提高了迭代收敛速度.除灰度特征外,聚类时还利用了点到类的距离特征,较好地保持了分割图像的连续性.直接观察对比多幅图像的分割实验结果可以明显地发现,该算法较常用的Otsu方法、二维熵阈值分割方法以及FCM方法的分割结果更准确.就Lena图像而言,