论文部分内容阅读
将Filter型粗糙集属性约简方法与PSO-SVM方法相结合,提出一种新的粗糙集粒子群支持向量机(RSPSO-SVM)特征选择方法.给出了该方法的特征选择具体步骤,并对比分析了所提方法的性能.仿真实验表明:提出的RS-PSO-SVM特征选择方法是有效的,在保证所选特征集为最优情况下,极大地缩短所用时间,可以将其应用在多维数据的特征选择中.