论文部分内容阅读
采用氧化和析出的方法在氧化硅中凝聚生成锗纳米晶体量子点结构.其形成的锗晶体团簇没有突出的棱角和支晶结构,锗晶体团簇的轮廓较圆混,故可以用球形量子点模型来模拟实际的锗晶体团簇.对比了在长时间退火氧化条件下和在短时间退火用激光照射氧化条件下所生成的锗纳米晶体结构的PL光谱和对应的锗纳米晶体团簇的尺寸分布.短时间退火氧化条件下生成的锗纳米晶体较小(3·28—3·96nm),长时间退火用激光照射氧化条件下所生成的锗纳米晶体较大(3·72—4·98nm);其分布结构显示某些尺寸的锗纳米晶体团簇较稳定,适当的氧化条件可以得到尺寸分布范围较窄的锗纳米晶体团簇.用量子点受限模型计算了锗纳米晶体团簇的能隙结构,用MonteCarlo方法模拟了PL光谱和对应的锗纳米晶体团簇的尺寸分布,分别与实验结果符合较好.
The formation of germanium nanocrystal quantum dot structure by the method of oxidation and precipitation condensed in silicon oxide has no prominent edges and branches crystal structure, germanium crystal cluster contours more rounded, it can be spherical quantum Point model to simulate the actual germanium crystal cluster.Compared the PL spectra of the germanium nanocrystal structure and the corresponding germanium nanocrystal clusters generated under long-term annealing oxidation conditions and short-time annealing laser irradiation oxidation conditions The size distribution of germanium nanocrystals generated by short-time annealing is small (3.28-3 · 96nm), and the germanium nanocrystals generated by long-time annealing with laser irradiation are large (3.72-4 · 98nm). The distribution structure of germanium nanocrystal clusters with some sizes is stable, and germanium nanocrystal clusters with narrow size distribution can be obtained by proper oxidation conditions.Gene nanocrystal clusters The PL spectra and corresponding size distributions of germanium nanocrystal clusters are simulated by Monte Carlo method, which are in good agreement with the experimental results respectively.