论文部分内容阅读
本文提出了一种基于自由手写体数字的形心同心圆结构来提取贯穿特征码的神经网络识别方法。该方法是用自由手写体数字的形心同心圆来抽取其贯穿特征码,将获得的这些模式特征训练改进的BP神经网络分类器,从而达到快速分类的目的。将其应用于自由手写体数字的信函自动分拣系统,单字的识别率达到97%以上,整信的识别率也可达到92%以上,得到了令人满意的结果。