论文部分内容阅读
深度神经网络已经在语音分离方面取得很好的表现,但是卷积神经网络获取的语音信息会更全面。经常用来评估预测目标好坏的分类准确率和命中率-错误率(HIT-FA)之间存在不平衡现象。为了解决这种不平衡,对卷积神经网络的损失函数进行了改进,提出使用二元交叉熵及命中率-错误率混合(CHF)损失函数,构成CHF-CNN模型。实验证明,使用CHF-CNN模型可以同时提高分类准确率和命中率-错误率(HIT-FA)来避免不平衡现象。此外,还验证了不同信噪比下的语音分离成果,发现当信噪比匹配时效果比不匹配时明显好,同时随