论文部分内容阅读
本研究提出一种新的心律失常自动分类方法,辅助医生诊治心律失常。通过构建卷积神经网络对心电信号以及QRS波群的小波分量进行特征提取,将网络提取到的心电信号特征和小波特征与人工提取的RR间期特征,输入到全连接层进行融合,在输出层使用softmax函数对心拍进行分类。使用MIT-BIH心律失常数据库中的MILL导联数据对网络进行训练和测试。经测试,该方法的总体分类准确度达98.12%,平均灵敏度为87.32%,平均阳性预测值为90.37%。该方法能够快速识别不同类型的心律失常,对于计算机辅助诊断心律失常的应用具