论文部分内容阅读
针对纺织复合材料细观有限元分析中单胞网格的快速生成与顺利施加周期性边界条件之间的矛盾,提出了非周期性网格划分条件下,一般性周期性边界条件的数学表达形式。基于ABAQUS有限元软件平台,通过在单胞模型的相对面、相对边及相对角点施加多点约束(MPC)方程,实现了一般性周期性边界条件的施加。结合三维四向编织复合材料单胞模型,对比分析了周期性网格划分和非周期性网格划分情况下,单胞模型受载下的变形状态、应力分布及弹性性能的预测结果,验证了一般性周期性边界条件的正确性和有效性。研究表明:一般性周期性边界条件可以实现复杂细观结构单胞模型的自由网格划分,降低网格划分的难度,提高网格生成的质量。
Aiming at the contradiction between the rapid generation of single meshes in the mesostructure finite element analysis of textile composites and the periodic application of periodic boundary conditions, a mathematical expression of general periodic boundary conditions under non-periodic meshing is proposed . Based on the ABAQUS finite element software platform, the application of the general periodic boundary conditions is achieved by applying the MPC equation on the opposite, opposite and opposite corners of the unit cell model. Combined with the three-dimensional and four-directional braided composite unit cell model, the deformation state, the stress distribution and the prediction of the elastic properties of the single cell model under cyclic loading and non-periodic loading are contrasted and analyzed. Correctness and validity of general periodic boundary conditions. The results show that the general periodic boundary conditions can realize the free meshing of complex mesostructures, reduce the difficulty of meshing and improve the quality of mesh generation.