论文部分内容阅读
为了补偿迟滞特性对系统的不良影响,提高迟滞非线性系统的控制精度,建立了神经网络迟滞非线性逆模型.由于神经网络不能够直接逼近迟滞逆这种具有记忆性的多映射现象,通过引入一个迟滞逆算子,将多映射的迟滞逆转换成一一映射,然后运用神经网络来逼近这个一一映射从而建立一个基于神经网络的迟滞逆模型.该模型的主要优点是结构简单、精度高,可以在线调整神经网络的权值以适应不同工作条件下的迟滞逆辨识.最后,运用该方法对压电执行器中的迟滞非线性建立了逆模型.