论文部分内容阅读
当检验数据中包含有新的类别时,传统判别分析方法所构造的分类器,无法识别这些新类别,只能将检验数据划分到学习阶段所遇到的已知类别当中,分类正确率较低。为克服这一缺陷,文章引入一种基于混合模型的动态判别分析方法,可自适应调整原有的分类器,使之能够发现新类别,并显著提高分类正确率。一个实际数据的分类结果验证了该方法的有效性。