论数形结合思想在初中数学教学中的应用策略

来源 :数学学习与研究 | 被引量 : 0次 | 上传用户:zhuzhongbao2005
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  【摘要】本文以初中数学教学对数形结合思想的应用为探讨主题,针对当前数学教学在初中阶段的落实情况,分析数形结合的基本概念,以及数形结合思想在提高学生解题能力、优化教学效率等方面的价值体现,提出借助概念教学、启发学生树立数形结合意识,抽象问题具体化、掌握数形结合方法,结合问题情境、开展实践训练、发挥学生主体作用等有效的教学策略.
  【关键词】数形结合;初中数学;应用策略
  引 言
  数学思想是发展、延续数学的核心组成部分,无论是抽象的理论化语言,还是直观的图形图像,都是数学学科内不可或缺的关键元素,数形结合思想强调将二者融合发展,为转换代数问题与图形问题搭建适宜渠道.教师在初中数学课程教学过程中引入数形结合思想,有助于强化并提升学生的逻辑思维水平,推动学科教学实效性的稳步提升.
  一、数形结合思想概述
  (一)数形结合的基本概念
  有机结合直观化的图形语言、抽象化的代数语言是数形结合思想的基本含义,与此同时,也可以将其理解为一种特殊的解题方法,即面对的是代数问题,运用数形结合将其向几何问题予以转化,反之亦然.这样的处理方式能够将复杂的问题进行适当简化,以此为理解与记忆提供便利.
  从数学学科问题研究的角度来看,数形结合思想属于一种高效的思想方法,它能够将可视图形融入抽象思维,进而以直观化的方式呈现晦涩难懂的数学问题.教师将数形结合思想方法逐步引入并渗透到初中阶段的数学学科教学中,能够针对性地启发学生逻辑思维能力的养成,促使学生掌握解决实际问题的科学方法.
  (二)数形结合思想的价值体现
  在数学课堂教学过程中,融入数形结合思想的教学价值主要体现在两方面:(1)提高学生对数学问题的解决能力.在运用这一思想方法分析并解答实际问题时,关键点与着手点是如何有效结合具象化的几何图形与抽象化的理论内容,适当切换形象思维、抽象思维,达到科学简化复杂数学问题的目的,在这样的学习与实践过程中,学生灵活化解决数学难题的能力必然得到显著提升.(2)提高数学学科课堂教学效率.我们通过对比当前大部分的教学思路与授课方法可以发现,数形结合思想在课堂教学环境下具有显著的应用优势,引入数形结合思想有助于推动学科教学实效性的大幅提升.在实际的教学环节中,教师可以将整体的数形结合解题思想进行拆解,分成两个不同类型,一是借数解形,二是借形解数,那么在面对实际问题时,学生便能夠真正地站在这两个思考角度分析解决问题的方法,从而掌握解答复杂数学难题的实践能力.
  二、数形结合思想在初中数学教学中的应用策略
  (一)借助概念教学、树立数形结合意识
  数学学习过程不仅专注于学生思维能力、解题能力的提升,还是对学生数学意识的直观考验.要想认识到数学学习的本质意义、提高实际学习水平,学生必须拥有一定的学科意识,这是理解与掌握数形结合思想的基础与关键所在.概念教学是初中阶段数学教学的重要组成部分之一,教材课本上大部分的章节内容都会涉及许多复杂化、抽象化的概念与定义,这为学生对学科理论知识的学习与深入理解带来很大难度.教师如果一味地沿用固有的教学模式,让学生以死记硬背的范式记住课本上的数学概念,那么不仅无法取得更好的教学效果,也会大幅削弱学生对学科的学习热情.在渗透数形结合思想的过程中,教师应有意识地启发学生形成与之对应的思想意识,依托于直观形式下的图形,准确衔接到对理论知识与抽象概念的讲解过程中,或是以动态化的多种方式将数形结合过程全方位地演示出来,便于学生领会并掌握这一思想方法在数学学习中的实际运用.
  例如,在讲解《平移》一课时,教师可以先让学生从字面上理解平移的数学概念:在平面内,将一个图形沿某一直线方向移动一定的距离,图形的这种移动,叫做平移变换,简称平移.在分析与理解这一概念时,教师应引导学生有意识地指出关键点,如“某一直线方向”“移动一定距离”等,然后让学生说一说在实际生活场景中有哪些常见的平移现象.结合生活经验与认知基础,学生可以说出在升国旗的过程中,国旗属于平移运动,大厦内的电梯在运行时,也属于平移运动.通过将抽象化的概念进行具象化处理,学生便能够进一步了解平移的本质含义,挖掘这种变化形式的特点,即在平移前后,图形的大小与形状等是完全相等的,没有产生变化.要想扎实地掌握一种学习方法,根本在于思想认识上的提升,因此数形结合意识的形成不仅是学生学科认知水平的成长,也是其学习思维的进一步拓宽与良好发展,这对于初中数学课堂教学效率的提升具有显著帮助.
  (二)抽象问题具体化、掌握数形结合方法
  无论是以形转数,还是以数转形,都是数形结合思想在数学课程教学过程中的第一层应用.应用问题在初中数学教学中占比较大,将数形结合法融入实际问题的解决过程中有助于锻炼学生的数学思维,增强其分析问题、理解问题与解决问题的实践能力.在知识基础较差、学习能力有限等因素的影响下,许多学生在理解题目含义上就会感到困难,无法突破解题过程中的第一项任务,从而便难以继续后续的答题过程.运用数形结合思想有机转换抽象化的数学问题,再按照具象化的形式进行理解与深度挖掘,能够有效提高学生解决应用问题的效率,使学生掌握多元化类型题目的分类方法与解答方法,突破以往在问题理解与思路分析方面遇到的困难与阻碍.
  以直观认识的方式分析抽象问题时,学生往往会感觉难度较大,在实际解答的过程中也可能会出现较高的错误率.为了改变这一现状,教师可以引导学生在基本把握数形结合思想的前提条件下,将其灵活运用到实际问题的解答过程中,首先将题目的要求予以明确,然后再将其投射到具象化的知识结构上,为后续的结构分析与层次划分提供方便,当完成对大体内容的梳理后,再运用所学知识进行解答,得出最终结果.
  例如,我们在解答与《坐标方法的简单应用》相关的习题时,便可以运用数形结合的解题思想,如:线段CD是由线段AB平移得到的,且点A(-1,4)的对应点为点C(4,7),则点B(-4,-1)的对应点D的坐标是什么?在分析与理解这一抽象化问题时,学生应首先分析数形结合法在解答这道题目过程中的适用性,然后再构建平面直角坐标系,运用直观的图示形式展示抽象化坐标间的位置关系,这样便可以快速地得出点D的坐标为(1,2).   (三)结合问题情境、灵活运用数形结合
  在初中数学的课堂教学过程中,教师对问题情境的灵活运用有助于让学生在短时间内理解题目的本质含义,梳理出解答问题的有效思路,进而提高其数学解题能力与学习效率.对数形结合思想的灵活运用不应仅仅体现在对课本上理论知识的学习过程中,还应融入对数学题目的分析与解答阶段.
  例如,在学习《实际问题与二元一次方程组》时,我们可以运用数形结合方法解决这一问题:甲乙两人到文具店购买同一种笔记本和钢笔,甲买了20本笔记本、12支钢笔,总共花了312元,乙买了15本笔记本、25支钢笔,总共花了330元,求笔记本与钢笔的单价.通过分析与理解这一实际问题,我们可以发现,其构造的是一种真实的问题情境,那么在解决此类问题时,学生便可以首先形成运用数形结合思想的意识,然后梳理出大体的解题脉络.学生首先制作一个包含甲乙两人购买数量、商品種类与总价的表格,确保自己能够在直观形式下准确地分析各个已知数字条件的逻辑关系,然后运用所学的二元一次方程组知识,设笔记本与钢笔的单价分别为x元、y元,依照题目中给出的数字间的等量关系,买20本笔记本和12支钢笔总共花去312元,买15本笔记本与25支钢笔总共花去330元,则可列方程20x 12y=312,15x 25y=330,得出x=12,y=6,则笔记本的单价为12元,钢笔的单价为6元.
  我们通过实践分析可以发现,对数形结合思想的灵活运用离不开对数学教材内容的掌握,以此教师应提高对文本分析的重视,深入挖掘课本中的关键知识点,将学生对理论知识的理解与把握进一步夯实,最大程度上提高其解决数学问题的实践能力.
  (四)依托实践训练、发挥学生主体作用
  我们将数形结合思想渗透到数学学科的实践训练中可以从以下两方面入手,一是在分析与解答和代数内容有关的问题时,我们应将图形的建构作为核心的辅助解题手段,站在形象化的思维角度上对题目中的已知代数关系予以深入剖析,进而运用适宜的方法得出问题的解答结果.二是在分析与处理含有几何图形的数学问题时,我们可以将所学的代数知识作为关键的参考依据,降低抽象化几何问题在思维表述、语言理解方面的难度,为学生对解题思路的梳理与形成提供便利.在新课程教育理念的指导下,教师需尤为注重课堂教学环境中学生主体作用的发挥,从思维意识上的革新与启迪入手,促使学生理解并掌握数形结合思想在数学学习中的运用方法,针对性地锻炼并提升学生分析问题、习题解答的学习能力.这样在剖析数学题目的过程中,学生便能够精准地找到数形关系的契合点,再按照具体问题的具体类型、属性等采取针对性解答.
  例如,在解答《多边形及其内角和》的相关问题时,我们便可以对数形结合思想进行运用.学生需要通过总结三角形、四边形以及五边形等多边形内角和的运算特点,归纳并把握多边形的内角和计算规律,即对于具有n条边的多边形来说,其内角和是(n-2)×180°.这样依据多边形的边数、已知角度等条件,我们就能够解决角度的相关问题.
  结束语
  在现代化的教育教学背景下,初中数学教师应充分认识到丰富教学思维、创新授课模式的必要性与重要性.将数形结合思想逐步渗透到数学课堂教学环境中,有利于学生思维能力与学科意识的培养,提高教师的课程教学成效.
  【参考文献】
  [1]马洪超.初中数学教学中数形结合的应用[C].广西写作学会教学研究专业委员会,2019.
  [2]周敏.数形结合在初中数学教学中的运用分析[C].教育部基础教育课程改革研究中心,2019.
  [3]王惠.数形结合:初中数学的制胜法宝[J].科学大众(科学教育),2019(11):14.
  [4]谢训强.探究数形结合思想在初中数学教学中的应用[C].天津电子出版社有限公司,2019.
  [5]陈建春.浅析初中数学数形结合教学的策略[C].教育部基础教育课程改革研究中心,2019.
其他文献
注重学生核心素养的培养是新时期教学活动开展的重要方向,对于初中化学教学活动的开展而言,如何在坚持核心素养培养的基础上实 现课堂教学改革的升级,这本身也是一个值得关注的重要问题。本文以此为基础,首先就化学核心素养以及教学改革进行解释,而后立足初中化学 教学实践,就如何促进核心素养视野下初中化学课堂教学改革的相关问题进行思考。
【摘要】在小学数学教学中,教材文本解读是指对教材中的一句话或一个知识点的深入研究,是一种有效的理解与记忆的手段,对学生学科素养的提升,数学逻辑思维的构建,分析与整合能力的发展等都具有显著的作用.但就实际调查结果显示,目前小学教材文本解读仍存在有待提升的地方.因此,本文将对小学数学教材文本解读策略展开研究.  【关键词】小学数学教材;文本解读策略  前 言  随着时代的发展,人们的意识得到了显著的提
本文研究了北师大版数学选修4—5第26页第10题,2017年高考全国Ⅱ卷不等式选讲的第二问,后者题目条件相对前者有了改变,证明方法也发生了一些变化,证法多样.本文研讨了综合法等四大类共12种方法,给出了不同的解答.对于有些典例,教师可以将题目改变,用多种方法证明,培养学生灵活的思维能力.
教育模式的不断改革与更新,让学校及教师更加注重学生身心健康的全面发展,而好的审美能力能够帮助学生掌握更好的学习方法和学 习技巧。在职业高中的语文教学中,教师应基于学生能够充分掌握语文课堂教学内容的基础上,加强对学生审美能力的提升 , 进一步提高学生的学 习效率。本文就核心素养下,如何加强职业高中语文教学中的审美教育进行了深入分析,希望对未来相关教育的提升有所帮助,仅供借鉴。
小学阶段是培养学生建立良好的品行的关键阶段。小学阶段的教师对于学生的影响就非常重要,教师的一言一行都影响着学生。因此, 小学教师在平时的教学过程中要落实立德树人,对于小学阶段的学生来讲,立德树人的教育应该和生活联系到一起,因此小学教师就可以充分利用 创设有趣的情境来进行教学,让学生在具体的生活情境中对一些事物的看法更加深刻。下面笔者就对核心素养背景下小学创设情境落实立德树人的 具体策略展开论述。
【摘要】阅读是学生获取知识的主要途径,任何学科都离不开阅读.数学是一门以数字为主体的科目,而且逻辑性非常强,所以学生必须具备一定的阅读能力,才能充分准确地理解题意,对问题做出解答.因此,数学教师在教学的过程中一定要注重培养学生的数学阅读能力,这样不仅可以提高课堂教学效率,对学生的思维逻辑能力和自主学习能力的培养是有一定成效的,还可以培养出好的学习习惯,进而体现出数学教学的有效性.  【关键词】小学
现阶段我国电力事业在发展中所使用的电力能源主要还是火电,虽然火力发电能够满足人们对于电力的大量需求,但是必定会在发电过程中产生大量的污染物,影响生态环境。基于此,本文对于目前火力发电厂中电气节能降耗技术应用存在的问题进行详细分析,进而探索出具体的技术应用措施,以供相关人员参考,提升发电厂的节能降耗水平与能力。
伴随着中国经济的提升,教育改革也成为了重中之重,不单只是注重考试的分数,更加关心学生的德智体美劳全方面发展。作为初中的 道德与法治课教学,教师帮助学生塑造正确的人生观、提升道德涵养、加增法治意识。在全新课程的改动之下,互动式教学成为道德与法治课程中 全新教学模式,充分调动了学生的对课程内容的兴趣,深度挖掘其内容的深刻含义,师生共同参与到其中,取缔传统教学中的呆板模式。本文将以 互动式教学模式在初中道德与法治课教学中的应用与实践为主题进行充分解析。
通过近几年中考试题可知,中考化学试题凸显化学学科的核心素养,整套试题图文并茂,结合生活实际,关注社会热点,着重体现知识 的应用,能提升学生运用所学知识解决问题的能力,突出了学科与生活、生产、社会、环境的紧密联系,体现了化学源于生活最终又服务于生活的 时代意义。
【摘要】俗语说“学好数理化,走遍天下都不怕”,这就证明数学、物理和化学在实践中的重要性,而数学是物理和化学的基础,因此,数学在这句俗语中占据着重要作用.高中阶段的数学科目非常重要,是高中课程中的重要组成之一,无论是从教学角度,还是学生学习的角度来看,数学都是非常重要的.新课改的推行,开始注重以学生为中心,提升知识的应用能力.数学学科也要再次步入一个快速发展的模式,主要进行创新教学,加快提高高中数学