针对并行MRPrePost(parallel prepost algorithm based on MapReduce)频繁项集挖掘算法在大数据环境存在运行时间长、内存占用量大和节点负载不均衡的问题,提出一种基于DiffNodeset的并行频繁项集挖掘算法(parallel frequent itemsets mining using DiffNodeset,PFIMD)。该算法首先采用一种数据结
类别不平衡数据是指不同类别的样本数目差异很大,AUC(area under the ROC curve)是衡量不平衡数据分类器性能的一个重要指标,由于AUC不可微,研究者提出了众多替代成对损失函数优化AUC。成对损失的样本对数目为正负样本数目的乘积,大量成对损失较小的正负样本对影响了分类器的性能。针对这一问题,提出了一种加权的成对损失函数WPLoss,通过赋予成对损失较大的正负样本对更高的损失权重