论文部分内容阅读
在此之前,人们常单独利用地震或测井数据研究储层参数的空间分布,而把二者结合起来研究储层参数的空间变化还比较少见。本文把这两种参数有机地结合起来,利用贝叶斯-克里金估计技术进行储层参数预测。该项技术是把线性贝叶斯理论运用于克里金估计,其作法是构想一个模型,把用以进行空间估计的数据分为两类,即观测数据和猜测数据,然后用区域性变量理论研突这两类数据的空间变化特征。对具体的地震勘探和测井而言,把测井数据视为观测数据,把地震数据视为猜测数据,经对王居-曹家务地区实际资料进行砂岩厚度、孔隙率的预测,证明了该方法的正确性。
Until now, people often use the seismic data or logging data to study the spatial distribution of reservoir parameters independently. However, it is rare to study the spatial variation of reservoir parameters by combining them. In this paper, we combine these two parameters organically and use Bayes-Kriging estimation technique to predict reservoir parameters. This technique applies linear Bayesian theory to Kriging estimation by conceiving a model that divides the data used for spatial estimation into two categories, namely, observation data and guessing data, and then uses regional variable theory Spatial variation of these two types of data. For the specific seismic exploration and logging, the logging data as the observation data, the seismic data as a guess data, the actual data of the Wangju - Cao Jiawu sandstone thickness, porosity prediction, proved that the The correctness of the method.