论文部分内容阅读
该文采用一种经过特殊处理的时变自回归滑动平均(ARMA)模型对非平稳随机信号进行分析.将这种模型左边的时变参数假设为一组基时间函数的线性组合,右边时变参数简化为常数,并用反馈线性估计法进行参数估计.该方法的主要特点是简单,计算量小,占用存储空间少.并用仿真的方法对算法予以验证,可用于一些常用的非平稳随机信号的分析.“,”In this paper we analysis nonstationary random signal by a special processing tune-varying autoregressive moving-average (ARMA) model. This model has time-varying parameters in the left and constant parameters in the right, while the time-varging parameters are asssumed to be linear combinations of a set of basis time -varying functions. The feedback linear estimation is used to estimate the parameters of ARMA model . The method has the advantage of simple, saving computation time and storage space. Finally we verify this method by simulation , and nlysis some nonsttionry mdom signals by this method.