论文部分内容阅读
针对电厂机组运行管理过程中人工调控运行参数耗时费力、效率低、准确率低等问题,设计了一种基于数据挖掘的电厂机组运行优化调控系统.首先,采用数据挖掘算法对机组历史和实时运行数据进行参数的整合和相关性分析,得到影响机组运行的关键参数,作为机组健康状态评估的指标.然后,利用长短时记忆(LSTM)神经网络模型对机组健康状态特征模块中确定的特征值进行训练,预测参数随时间的变化趋势,实现机组智能调控.最后,开发了一套燃气蒸汽联合循环发电机组运行调控系统,并应用于浙江某电厂.运行结果表明:该系统可指导机组运行优化,提高机组的运行可靠性及经济性;优化后电厂机组出功功率提升了0.4125%,年电能产量增加4806MW·h,机组年收益增加约326万元.