Mining Causality for Explanation Knowledge from Text

来源 :Journal of Computer Science & Technology | 被引量 : 0次 | 上传用户:hulianwu2009
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Mining causality is essential to provide a diagnosis.This research aims at extracting the causality existing within multiple sentences or EDUs(Elementary Discourse Unit).The research emphasizes the use of causalily verbs because they make explicit in a certain way the consequent events of a cause,e.g.,“Aphids suck the sap from rice leaves. Then leaves will shrink.Later.they will become yellow and dry.”A verb can also be the causal-verb link between cause and effect within EDU(s),e.g.,“Aphids suck the sap from rice leaves causing leaves to be shrunk”(“causing”) is equivalent to a causal-verb link in Thai).The research confronts two main problems:identifying the interesting causality events from documents and identifying their boundaries.Then,we propose mining on verbs by using two different machine learning techniques,Naive Bayes classifier and Support Vector Machine.The resulted mining rules will be used for the identification and the causality extraction of the multiple EDUs from text.Our multiple EDUs extraction shows 0.88 precision with 0.75 recall from Naive Bayes classifier and 0.89 precision with 0.76 recall from Support Vector Machine. Mining causality is essential to provide a diagnosis. This research aims at extracting the causality existing within multiple sentences or EDUs (Elementary Discourse Unit). The research emphasizes the use of causalily verbs because they make explicit in a certain way the consequent events of a cause , “Aphids suck the sap from rice leaves. Then leaves will shrink. Fluid. the will be yellow and dry.” “A verb can also be the causal-verb link between cause and effect within EDU (s), eg , ”Aphids suck the sap from rice leaves causing leaves to be shrunk“ ( ”causing ") is equivalent to a causal-verb link in Thai). The research confronts two main problems: identifying the interesting causality events from documents and identifying their boundaries. Chen, we propose mining on verbs by using two different machine learning techniques, Naive Bayes classifier and Support Vector Machine. The resulting mining rules will be used for the identification and the causality extraction of the multiple EDUs fro. m multiple. Our multiple EDUs extraction shows 0.88 precision with 0.75 recall from Naive Bayes classifier and 0.89 precision with 0.76 recall from Support Vector Machine.
其他文献
期刊
面对国有企业全面深化改革的新形势,促进国有企业党员对队伍建设是保证改革顺利的重要因素,同时,对于青年国有企业党员职工队伍建设是促进企业快速发展的重要条件.因此,对新
给定两个点以及相应的两个切向,Femiani等人提出了基于最小离心率椭圆的插值方法.同一椭圆上不同位置的椭圆弧,对应的形状与圆弧的接近程度是不一样的.椭圆弧的最小曲率半径
目的掌握宁德城澳港鼠形动物的分布及其携带体表寄生虫和病原体的情况,为病媒及其传染病的防制工作提供科学依据。方法采用鼠笼法,进行为期1年每月1次的调查,同时检测鼠形动
赵孟頫的书法和绘画开创元代新画风,被称为“元人冠冕頫”.赵孟的绘画博彩晋、唐、北宋诸家之长,是元初融合南北体格开一代江南山水新风格,他提出:“书画本来同”的口号,以书
初见马澜,一席中式布衣,质朴而有韵味;轻声纽语,谦和而有礼。在她身上,能够看到书法家所具备的心如止水,那份平静真是令人称羡。春光明媚的午后,我们有幸走进她的工作室,参观
期刊
一天,我与一习姓蜂友闲谈,讲到如今蜂产品价格不稳定,有许多蜂场面临亏损倒场时他说:“蜂业这行太缺乏有识之士了,商家只顾赚钱,不向前看。蜂产品销路好时,不管好坏蜂拥抢购;行情不好
对北京地区蜜蜂授粉业的现状进行了调研,针对存在的问题,提出了蜂授粉产业化发展的思路与对策。