论文部分内容阅读
应用 L ove的壳体理论得到了非轴对称变形的复合材料圆柱壳的控制方程。对扰动状态的非轴对称变形 ,位移函数采用复 Fourier级数形式 ,得到了 Mathieu形的扰动方程 ,由此给出了静态临界载荷和固有频率。本文中对层合壳在轴向冲击载荷下的动态稳定性研究考虑了几何非线性 ,这是以往在该问题的研究中所未涉及的问题。研究表明 ,考虑几何非线性得到的临界载荷较线性几何关系计算结果要高 5 %左右。因此 ,考虑几何非线性是必要的
The governing equations of a non-axisymmetric composite cylindrical shell are obtained by using L ove shell theory. For the non-axisymmetric deformation of the perturbation state, the displacement function takes the form of complex Fourier series, and the perturbation equation of Mathieu-shape is obtained. The static critical load and natural frequency are given. In this paper, the dynamic stability of laminated shells under axial impact load is considered geometric nonlinearity, which is a problem not covered in the previous research. The research shows that the critical load obtained by considering the geometrical nonlinearity is about 5% higher than the linear geometric relation. Therefore, it is necessary to consider geometric nonlinearity