论文部分内容阅读
宿州春季严重干旱序列数据偏少,可用传统GM(1,1)模型进行预测,但由于序列变化幅度较大,预测效果不理想。本文利用灰色与BP神经网络组合模型对宿州春季重旱发生年份进行预测,即首先弱化序列变化幅度,并改进GM(1,1)模型导数信息处理方式,构建可逼近精度目标的m—GM(1,1)预测模型,然后应用BP神经网络对m—GM(1,1)模型的残差进行拟合,对m—GM(1,1)预测模型进行修正。结果表明,灰色神经网络组合模型的精度(|Q|=0.0045)比单一的1.7-GM(1,1)模型(|Q|=4.18)和传统的单一