论文部分内容阅读
为了探索脉冲激光强化镀层的规律,采用误差反向传播神经网络对脉冲激光参量与镀层形貌(强化层深度、宽度及熔化状态)之间的关系进行建模,并选取带动量的自适应学习率算法对网络进行改进,以增加网络稳定性,提高训练速度与精度。结果表明,该网络模型对激光处理后镀层形貌的预测值与实际值接近,其相对误差在±8.33%以内,可以有效地对激光强化镀层形貌进行预测。该方法为探索脉冲激光强化镀层的规律提供了一条新的途径。