论文部分内容阅读
电流调节器在现代电力电子交流电变换系统中起着重要的作用。转换该电流最直接的策略就是用一个简单的闭环比例-积分(PI)调节器。闭环比例-积分(PI)调节器在比例增益和积分增益增长的时候没有理论上的稳定限制,因为它仅仅是一个二阶系统。然而,脉宽调制(PWM)传送和控制器的采样延迟限制了可以在实际系统中得到的增益值。考虑到这些限制,本文提出了一种分析方法来确定在任何种类的线性交流电流控制器都可得到的增益值。分析结果表明,最大的比例增益是由被控对象串联电感,直流母线电压,传送和采样延迟决定的。而最大的积分增益主要是由传送和采样延迟决定的。本文的研究成果可以应用在静坐坐标的PI调节器,具有反电动势补偿的静坐坐标控制器,静坐坐标PR控制器,同步d-q坐标控制器,因为他们都具有相同的必须为特定的应用进行优化的比例和积分增益。
Current regulators play an important role in modern power electronic AC power conversion system. The most straightforward strategy for converting this current is to use a simple closed-loop proportional-integral (PI) regulator. The closed-loop proportional-integral (PI) regulator has no theoretical stability limit as the proportional gain and integral gain increase because it is just a second-order system. However, the pulse width modulation (PWM) transfer and the controller’s sample delay limit the gain values that can be found in real systems. Taking these constraints into account, this paper presents an analytical method to determine the gain values available for any type of linear AC current controller. The analysis results show that the maximum proportional gain is determined by the series inductance of the controlled object, the DC bus voltage, the transmission and the sampling delay. The maximum integral gain is mainly determined by the transmission and sampling delay. The research results of this paper can be applied to the PI regulator in sit-up coordinates, the sit-back coordinate controller with back-emf compensation, the sit-in coordinate PR controller and the synchronous dq coordinate controller because they all have the same optimization for a specific application Proportional and integral gain.