论文部分内容阅读
Based on the nanostructured surface model,where conical nanoparticle arrays grow out symmetrically from a plane metal substrate,a theoretical model of the local electric potential near nanocones is built when a uniform external electric field is applied.In terms of this model,the electric potential distribution near the nanocone arrays is obtained and given by a curved surface using a numerical computation method.The computational results show that the electric potential distribution near the nanocone arrays exhibit an obvious geometrical symmetry.These results could serve as a basis for explaining many abnormal phenomena,such as the abnormal infrared effects(AIREs) which are found on nanostructured metal surfaces,as well as a reference for investigating the applications of nanomaterials,such as nanoelectrodes and nanosensors.
Based on the nanostructured surface model, where conical nanoparticle arrays grow out symmetrically from a plane metal substrate, a theoretical model of the local electric potential near nanocones is built when a uniform external electric field is applied. In terms of this model, the electric potential distribution near the nanocone arrays is obtained and given by a curved surface using a numerical computation method. The computational results show that the electric potential distribution near the nanocone arrays exhibit an obvious geometrical symmetry.These results could serve as a basis for explaining many abnormal phenomena , such as the abnormal infrared effects (AIREs) which are found on nanostructured metal surfaces, as well as a reference for investigating the applications of nanomaterials, such as nanoelectrodes and nanosensors.