论文部分内容阅读
针对旋转机械早期故障信号呈现微弱、相互干扰,易导致故障智能分类精度低的现状,提出一种融合优化的PSORVMD (particle swarm optimization-relevant variational mode decomposition)与SAE(stacked autoencoder)的旋转机械早期故障分类方法;智能分类方法主要由信号增强与智能分类两阶段组成;首先该方法利用所改进的PSO-RVMD分解电机-轴承系统的早期故障振动信号,通过定义的相关能量比概念计算各分量信号(IMFs)与原