论文部分内容阅读
提出基于电机铭牌参数结合粒子群优化算法(PSO)对电机等效电路参数辨识的新方法,有效解决了目前等效电路参数辨识法中存在的问题。在电机等效电路中引入杂散损耗等效电阻、机械损耗、滑环碳刷接触损耗,建立精确的电机等效电路;基于等效电路计算的电机参数和铭牌参数建立等效电路参数辨识优化模型,用PSO对优化模型求解,以较高的概率达到了优化目标。用辨识出的等效电路参数计算电机在不同转速下的电参数,并与实测值比较,验证了基于电机铭牌参数通过PSO优化方法辨识等效电路参数的有效性。
A new method based on motor nameplate parameters combined with Particle Swarm Optimization (PSO) to identify motor equivalent circuit parameters is proposed, which effectively solves the existing problems in the equivalent circuit parameter identification method. The stray loss equivalent resistance, mechanical loss and sliding contact loss of slip ring are introduced into the equivalent circuit of the motor to establish accurate motor equivalent circuit. The equivalent circuit is calculated based on the equivalent circuit. Equivalent circuit parameter identification and optimization Model, solve the optimization model with PSO, and achieve the optimization goal with high probability. The calculated equivalent circuit parameters are used to calculate the electrical parameters of the motor at different speeds. Compared with the measured values, the validity of the equivalent circuit parameters identified by the PSO optimization method based on the motor nameplate parameters is verified.