论文部分内容阅读
目的构建侧方静态应力作用下骨盆骨的尸体模型,运用生物力学试验技术在垂直应力试验机上对单纯侧方受力导致的旋转不稳定骨盆骨折的生物力学特点及其发病机制进行初步探讨。方法选取正常成人骨盆试验标本12具,其中男性7例,女性5例;年龄45~68岁,平均年龄57.32岁。分为2组,每组6具。构建侧方撞击的生物力学模型,测量单纯静态侧方应力作用于髂嵴或股骨大粗隆时,不同工况下骶髂关节、髋臼、耻骨支等骨盆常见骨折部位的受力状况,用应变仪获得各试验点的主应变、主方向、垂直位移,以及测量静态应力下骨盆骨折阈值,并构建应变-时间曲线。结果①500 N静态侧方应力作用于髂嵴时,骨盆环结构中固定侧髂骨翼,对侧耻骨上支承载压(397±43)、拉应变(113.2±11.4)最大,受力侧坐骨支应变最小(23±7);髂骨翼位移最大(4.6 mm),髂嵴在静态侧方应力作用下的极限载荷(3 752±425)N;②股骨大粗隆在500 N静态侧方应力作用下,在骨盆环结构中,对侧耻骨上支承载压(277±31)、拉应变(401±53)最大,受力侧髂骨应变值最小(35±11);左耻骨支位移最大(2.3 mm)。股骨大粗隆在侧方应力作用下的极限载荷(4 207±617)N;③静态侧方应力作用于股骨大粗隆时产生的骨盆各点位移均小于作用于骨盆髂嵴时产生的位移。结论①耻骨支及耻骨联合等骨盆前环结构对于维持侧方应力下骨盆环旋转稳定性至关重要。②生物力学试验能较好地反映静态侧方应力撞击下骨盆骨的生物力学特性。
OBJECTIVE: To construct the pelvis model of the pelvis under lateral static stress and to investigate the biomechanical characteristics and pathogenesis of the unstable pelvic fractures caused by simple lateral force on a vertical stress testing machine using the biomechanical test technique. Methods 12 normal adult pelvis specimens were selected, including 7 males and 5 females, aged from 45 to 68 years, with an average age of 57.32 years. Divided into two groups, each with 6. To construct the biomechanical model of lateral impact and to measure the stress condition of the common fractures of the pelvis in sacroiliac joint, acetabulum, pubis branch under different conditions when pure static lateral stress acts on iliac crest or femur greater trochanter, The strain gauge obtained the main strain, main direction and vertical displacement of each test point, and measured the threshold of pelvic fracture under static stress, and constructed the strain-time curve. Results ①500 N static lateral stress on the iliac crest, the fixed iliac crest of the pelvic ring structure, the contralateral suprapubic bearing load (397 ± 43), the maximum tensile strain (113.2 ± 11.4), the force-side ischial branch (23 ± 7), the maximum displacement of the ilium wing (4.6 mm), and the ultimate load of the iliac crest under static lateral stress (3 752 ± 425) N. The greater femoral trochanter at 500 N static lateral stress In the pelvic ring structure, the supraclavicular supraclavicular pressure was the highest (277 ± 31), the largest tensile strain (401 ± 53) and the lowest (35 ± 11) (2.3 mm). The ultimate load of femur greater trochanter under lateral stress (4 207 ± 617) N; ③ The displacement of the pelvis produced by static lateral stress on femur greater trochanter was less than that of the femoral iliac crest . Conclusions ① The structures of the anterior pelvic ring, such as the pubic symphysis and the pubic symphysis, are essential for maintaining the pelvic ring rotational stability under lateral stress. Biomechanical tests can better reflect the biomechanical properties of the pelvis under lateral static stress.