论文部分内容阅读
介绍了一种多输入、多输出系统的故障诊断参数选择方法,该方法以可观参数集的信息熵为标准,进行启发性诊断参数集的划分,先以系统状态决定的启发性诊断多数子集作为驱动数据,实施正向推理,缩小目标集合;再以故障目标集合为对象,进行反向推理以确定最终故障集合;最后将故障集合的元素所对应的可测诊断参数作为系统的诊断参数进行测量。该方法构成了诊断型专家系统的一子部分。
A fault diagnosis parameter selection method for multi-input and multi-output systems is introduced. This method uses the information entropy of observable parameter sets as the standard, and divides the heuristic diagnosis parameter sets. First, the heuristic diagnosis of most sub-sets As the driving data, forward reasoning is performed to narrow down the target set; then the target set is taken as the target and the reverse reasoning is performed to determine the final fault set; finally, the measurable diagnostic parameters corresponding to the elements of the fault set are used as the diagnostic parameters of the system measuring. This method forms a sub-part of a diagnostic expert system.