论文部分内容阅读
一、证明等式【例1】求证:C1n+2C2n+3C3n+…+nCnn=n·2n-1.证明:由题构造二项式(1+x)n=C0n+C1nx+C2nx2+…+Cnnxn.两端对x求导数得[(1+x)n]=[C0n+C1nx+C2nx2+…+Cnnxn]即n(1+x)n-1=C1n+2C2nx+…+(n-1)Cn-1nxn-2+nCnnxn-1令x=1得n·2n-1=C1n+2C2n+3C3n+…+nCnn∴C1n+2C2n+3C3n+…
First, prove the equation [Example 1] Proof: C1n+2C2n+3C3n+...+nCnn=n·2n-1. Proof: Construct a binomial formula (1+x) n=C0n+C1nx+C2nx2+...+Cnnxn. Derivatives at both ends for x are [(1+x)n]=[C0n+C1nx+C2nx2+...+Cnnxn] ie n(1+x)n-1=C1n+2C2nx+...+(n-1)Cn-1nxn -2+nCnnxn-1 Let x=1 get n·2n-1=C1n+2C2n+3C3n+...+nCnn∴C1n+2C2n+3C3n+...