论文部分内容阅读
This paper deals with the problems of best approximation in β-normed spaces.With the tool of conjugate cone introduced in [1] and via the Hahn-Banach extension theorem of β-subseminorm in [2],the characteristics that an element in a closed subspace is the best approximation are given in Section 2.It is obtained in Section 3 that all convex sets or subspaces of a β-normed space are semi-Chebyshev if and only if the space is itself strictly convex.The fact that every finite dimensional subspace of a strictly convex β-normed space must be Chebyshev is proved at last.