论文部分内容阅读
为了提高人脸识别的准确率,且考虑到训练样本的平均值不一定是训练样本分布中心,提出了改进的双向2DPCA人脸识别方法。首先,应用样本中间值代替样本的平均值来重建图像的总体散布矩阵,求解图像总体散布矩阵得到行列两个方向的最优投影向量,然后把人脸图像向这两个方向变换得到人脸识别特征矩阵,最后应用支持向量机进行分类识别。在ORL人脸库和Yale人脸库上对该算法进行实验研究,表明此方法在识别性能上优于普通的二维主成分分析和普通的双向二维主成分分析算法。