论文部分内容阅读
“数”与“形”是数学的基本研究对象,他们之间存在着对立统一的辨证关系。数形結合是一种重要的数学思想,是人们认识、理解、掌握数学的意识,它是我们解题的重要手段,是根据数理与图形之间的关系,认识研究对象的数学特征,寻求解决问题的方法的一种数学思想。它是在一定的数学知识、数学方法的基础上形成的。它对理解、掌握、运用数学知识和数学方法,觖决数学问题能起到促进和深化的作用。切实把握好数形结合的思想是学好数学的关键之一。
一、数形结合是一个数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形
或者是借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图像来直观地说明函数的性质;或者是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质。
数形结合的思想,其实质是将抽象的数学语言与直观的图像结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化。在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意义;第二是恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;第三是正确确定参数的取值范围。
二、运用数形结合思想方法一般要遵循以下二个原则
(一)等价原则
等价原则是指“数”的代数性质与“形”的几何性质的转化应是等价的,即对于所讨论的问题形与数所反映的反差关系应具有一致性,有时,由于图形的局限性、构图的粗糙和不准确,将对所讨论的问题产生影响,造成失误。
(二)、双向性原则
双向性原则是指几何直观的分析,又进行代数抽象的探索,代数表达及其运算比起几何图形及其结构有着自身固有的优越性,能克服几何直观方法的许多局限性。
三、数形结合思想在高中数学教学中重要作用
(一)从新课程标准对“双基”的要求来看数形结合思想
首先引用一下《数学新课程标准》对数学中的“双基”的理解:教师应帮助学生理解和掌握数学基础知识、基本技能,具体来说是:
1、强调对基本概念和基本思想的理解和掌握。对一些核心概念和基本思想(如函数,空间观念、运算、数形结合、向量、导数、统计、随机观念、算法等)都要贯穿高中教学的始终,由于数学的高度抽象性,要注重体现概念的来龙去脉,在教学中要引导学生经历从具体实例中抽象出数学概念的过程。
2、重视基本技能训练。要重视运算、作图、推理、处理数据以及科学计算器的使用等基本技能训练。
3、与时俱进地审视双基。随着时代和数学的发展,高中数学中的双基也在发生变化,例如统计、概率、导数、向量、算法等内容已成为高中数学的基础知识。对原有的一些基础知识也要用新的理念来组织教学。如立体几何的教学可从不同视角展开。从整体到局部,从具体到抽象,从一般到特殊,而且应注意用向量方法(代数方法)处理有关问题;不等式教学要关注它的几何背景及应用;三角恒等变形的教学应加强与向量的联系,简化相应的运算和证明……由此可见,新课程把数形结合思想作为中学数学中的重要思想,要求教师能充分挖掘它的教学功能和解题功能。
(二)从新课程标准对思维能力的要求来看数形结合思想
数形结合思想能帮助学生树立现代思维意识:第一通过数与形的有机结合,把形象思维与抽象思维有机地结合,尽可能地先形象后抽象,不但能促进这两种思维能力同步发展,还为学生初步形成辩证思维能力创造了条件。第二通过数形结合,能够有的放矢地帮助学生 从多角度、多层次出发地思考问题,养成多向性思维的好习惯。第三通过数形结合引导学生变静态思维方式为动态思维方式,也就是以运动、变化、联系的观点考虑问题,更好地把握事情的本质。
四、解题方法指导
1.转换数与形的三条途径:
① 通过坐标系的建立,引入数量化静为动,以动求解。
② 转化,通过分析数与式的结构特点,把问题转化到另一个角度来考虑,如将转化为勾股定理或平面上两点间的距离等。
③ 构造,比如构造一个几何图形,构造一个函数,构造一个图表等。
2.运用数形结合思想解题的三种类型及思维方法:
①“由形化数” :就是借助所给的图形,仔细观察研究,提示出图形中蕴含的数量关系,反映几何图形内在的属性。
②“由数化形” :就是根据题设条件正确绘制相应的图形,使图形能充分反映出它们相应的数量关系,提示出数与式的本质特征。
③“数形转换” :就是根据“数”与“形”既对立,又统一的特征,观察图形的形状,分析数与式的结构,引起联想,适时将它们相互转换,化抽象为直观并提示隐含的数量关系。
五、运用数形结合思想分析和解决问题时,要注意如下几点
在解题时,有时把数转化为形,以形直观地表达数来解决,往往使复杂问题简单化、抽象问题具体化.但是,依赖图象直观解题,也要注意如下几个问题.
1、注意图象延伸趋势2、注意图象伸展“速度”3、注意数形等价转化4、注意仔细观察图象5. 数形结合也有简繁之分。
总之,学生要真正掌握数形结合思想的精髓,必须有雄厚的基础知识和熟练的基本技巧,如果只理解了几个典型习题,就认为领会了数形结合这一思想方法,是错误的。所以要认真上好每一堂课,深入学习新教材的系统知识,掌握各种函数的图象特点,理解各种几何图形的性质。教师要引导学生根据问题的具体情况,注意改变观察和理解问题的角度,揭示问题的本质联系,用“数”的准确澄清“形”的模糊,用“形”的直观启迪“数”的计算,从而使问题得到解决。在平日的教学中,要紧紧抓住数形转化的策略,沟通知识联系,激发学生学习兴趣,提高学生的思维能力。只有这样,运用数形结合才能不断深化提高。
一、数形结合是一个数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形
或者是借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图像来直观地说明函数的性质;或者是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质。
数形结合的思想,其实质是将抽象的数学语言与直观的图像结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化。在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意义;第二是恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;第三是正确确定参数的取值范围。
二、运用数形结合思想方法一般要遵循以下二个原则
(一)等价原则
等价原则是指“数”的代数性质与“形”的几何性质的转化应是等价的,即对于所讨论的问题形与数所反映的反差关系应具有一致性,有时,由于图形的局限性、构图的粗糙和不准确,将对所讨论的问题产生影响,造成失误。
(二)、双向性原则
双向性原则是指几何直观的分析,又进行代数抽象的探索,代数表达及其运算比起几何图形及其结构有着自身固有的优越性,能克服几何直观方法的许多局限性。
三、数形结合思想在高中数学教学中重要作用
(一)从新课程标准对“双基”的要求来看数形结合思想
首先引用一下《数学新课程标准》对数学中的“双基”的理解:教师应帮助学生理解和掌握数学基础知识、基本技能,具体来说是:
1、强调对基本概念和基本思想的理解和掌握。对一些核心概念和基本思想(如函数,空间观念、运算、数形结合、向量、导数、统计、随机观念、算法等)都要贯穿高中教学的始终,由于数学的高度抽象性,要注重体现概念的来龙去脉,在教学中要引导学生经历从具体实例中抽象出数学概念的过程。
2、重视基本技能训练。要重视运算、作图、推理、处理数据以及科学计算器的使用等基本技能训练。
3、与时俱进地审视双基。随着时代和数学的发展,高中数学中的双基也在发生变化,例如统计、概率、导数、向量、算法等内容已成为高中数学的基础知识。对原有的一些基础知识也要用新的理念来组织教学。如立体几何的教学可从不同视角展开。从整体到局部,从具体到抽象,从一般到特殊,而且应注意用向量方法(代数方法)处理有关问题;不等式教学要关注它的几何背景及应用;三角恒等变形的教学应加强与向量的联系,简化相应的运算和证明……由此可见,新课程把数形结合思想作为中学数学中的重要思想,要求教师能充分挖掘它的教学功能和解题功能。
(二)从新课程标准对思维能力的要求来看数形结合思想
数形结合思想能帮助学生树立现代思维意识:第一通过数与形的有机结合,把形象思维与抽象思维有机地结合,尽可能地先形象后抽象,不但能促进这两种思维能力同步发展,还为学生初步形成辩证思维能力创造了条件。第二通过数形结合,能够有的放矢地帮助学生 从多角度、多层次出发地思考问题,养成多向性思维的好习惯。第三通过数形结合引导学生变静态思维方式为动态思维方式,也就是以运动、变化、联系的观点考虑问题,更好地把握事情的本质。
四、解题方法指导
1.转换数与形的三条途径:
① 通过坐标系的建立,引入数量化静为动,以动求解。
② 转化,通过分析数与式的结构特点,把问题转化到另一个角度来考虑,如将转化为勾股定理或平面上两点间的距离等。
③ 构造,比如构造一个几何图形,构造一个函数,构造一个图表等。
2.运用数形结合思想解题的三种类型及思维方法:
①“由形化数” :就是借助所给的图形,仔细观察研究,提示出图形中蕴含的数量关系,反映几何图形内在的属性。
②“由数化形” :就是根据题设条件正确绘制相应的图形,使图形能充分反映出它们相应的数量关系,提示出数与式的本质特征。
③“数形转换” :就是根据“数”与“形”既对立,又统一的特征,观察图形的形状,分析数与式的结构,引起联想,适时将它们相互转换,化抽象为直观并提示隐含的数量关系。
五、运用数形结合思想分析和解决问题时,要注意如下几点
在解题时,有时把数转化为形,以形直观地表达数来解决,往往使复杂问题简单化、抽象问题具体化.但是,依赖图象直观解题,也要注意如下几个问题.
1、注意图象延伸趋势2、注意图象伸展“速度”3、注意数形等价转化4、注意仔细观察图象5. 数形结合也有简繁之分。
总之,学生要真正掌握数形结合思想的精髓,必须有雄厚的基础知识和熟练的基本技巧,如果只理解了几个典型习题,就认为领会了数形结合这一思想方法,是错误的。所以要认真上好每一堂课,深入学习新教材的系统知识,掌握各种函数的图象特点,理解各种几何图形的性质。教师要引导学生根据问题的具体情况,注意改变观察和理解问题的角度,揭示问题的本质联系,用“数”的准确澄清“形”的模糊,用“形”的直观启迪“数”的计算,从而使问题得到解决。在平日的教学中,要紧紧抓住数形转化的策略,沟通知识联系,激发学生学习兴趣,提高学生的思维能力。只有这样,运用数形结合才能不断深化提高。