论文部分内容阅读
目的现有的图像识别方法应用于从同一分布中提取的训练数据和测试数据时具有良好性能,但这些方法在实际场景中并不适用,从而导致识别精度降低。使用领域自适应方法是解决此类问题的有效途径,领域自适应方法旨在解决来自两个领域相关但分布不同的数据问题。方法通过对数据分布的分析,提出一种基于注意力迁移的联合平衡自适应方法,将源域有标签数据中提取的图像特征迁移至无标签的目标域。首先,使用注意力迁移机制将有标签源域数据的空间类别信息迁移至无标签的目标域。通过定义卷积神经网络的注意力,使用关注信息来提高图像识别精度。其次