论文部分内容阅读
针对BP网络学习算法的不足,提出了一种基于递阶遗传算法(HGA)的BP网络建模方法。文中对递阶遗传算法在优化神经网络过程中的一些参数,如适应度函数、编码方案和交叉变异概率等提出具体的设计方法。该算法可以同时对神经网络进行拓扑结构优化和参数求解。最后采用该方法,实现了具有复杂非线性特征的某调速系统的精确建模。实验结果及其与改进BP算法建模方法的比较,验证了该算法的有效性。