论文部分内容阅读
本文基于修正的共轭梯度公式,提出了一个具有充分下降性的共轭梯度算法,该算法不需要线搜索,其步长由固定的公式给出.某种程度上,该算法利用了目标函数的二次信息,对目标函数的(近似)二次模型采取了精确线搜索,每步都只需要计算一次梯度值,特别适合大规模优化计算.本文还给出了该算法的全局收敛性分析,并得到强收敛结果.数值实验表明这种算法是很有应用前景的.