论文部分内容阅读
[摘要]近年来,随着计算机硬件和软件的迅速发展,采用人工神经网络的信息处理技术得到了迅速应用,应用领域也在不断的扩展。现如今人工神经网络不仅在各工程领域中得到广泛的应用,而且也成为在农业工程领域内实现生产劳动自动化的重要途径。本文针对BP网络模型及其算法进行了分析研究,并对BP神经网络在农业工程研究中的应用状况进行了综述,最后对未来的发展进行了展望。
[关键词]BP神经网络农业工程农业管理农业决策
一、引言
采用神经网络算法的信息处理技术,以其较强的计算性和学习性,现如今已经在各工程领域内得到了广泛应用。随着科技不断的发展和研究的不断深入,农业系统中采用的传统分析和管理的方法已经不能满足农业工程领域快速发展的需要。在农业系统中采用神经网络技术可在一定程度上可弥补传统方法的不足,现已成为实现农业现代化的一个重要途径。神经网络现已在农业生产的各个环节得到广泛的应用,从作物营养控制、作物疾病诊断、产量预测到产品分级,显示了巨大的潜力,并正以很快的速度与生产实际相结合。目前应用比较多的BP神经网络,可通过学习以任意精度逼近任何连续映射,在农业生产与科研中展示出了广阔的应用前景。
BP人工神经网络方法。人工神经网络是对生物神经网络的简化和模拟的一种信息处理系统,具有很强的信息存贮能力和计算能力,属于一种非经典的数值算法。通常可分为前向神经网络、反馈神经网络和自组织映射神经网络。BP神经网络(Backpropugation Neura1 Network)是一种单向传播的多层前向神经网络,可通过连续不断的在相对于误差函数斜率下降的方向上计算网络权值以及偏差的变化而逐渐逼近目标值,每一次数字和偏差的变化都与网络误差的影响成正比,并以反向传播的方式传递到每一层,从而实现了神经网络的学习过程。BP人工神经网络的结构如图所示,BP神经网络可分为输入层、中间层(隐含层)和输出层,其中输入和输出都只有一层,中间层可有一层或多层。同层的网络结点之间没有连接。每个网络结点表示一个神经元,其传递函数通常采用Sigmoid型函数。BP神经网络相当于从输入到输出的高度非线性映射,对于样本输入和输出,可以认为存在某一映射函数g,使得y0=g(xi),i=1,2,3,…,m,其中m为样本数,xi为输入样本,yo为输出结果。
BP神经网络的一个显著优点就是其可进行自学习,能够通过训练得到预期的效果。其学习过程由正向传播和反向传播组成,神经网络的输入值经过非线性变换从输入层经隐含层神经元的逐层处理传向输出层,此为正向传播过程。每一层神经元的状态将影响到下一层神经元状态。如果输出层得到的数值与期望输出有一定的偏差,则转入反向传播过程。神经网络通过对输入值和希望的输出值(教师值)进行比较,根据两者之间的差的函数来调整神经网络的各层的连接权值和各个神经元的阈值,最终使误差函数达到最小。其调整的过程是由后向前进行的,称为误差反向传播BP算法。具体学习过程如下:
(1)随机给各个权值赋一个初始权值,要求各个权值互不相等,且均为较小的非零数。
(2)输入样本集中每一个样本值,确定相应的网络实际输出值。
(3)计算实际的输出值与相应的样本集中的相应输出值的差值。
(4)按极小误差方式调整权值矩阵。
(5)判断网络误差是否小于训练前人为设定的一个较小的值,若小于,则跳出运算,此时的结果为神经网络的最终训练结果;若大于,则继续计算。
(6)判断最大迭代次数是否大于预先设定的数,若小于,返回(2);若大于,则中止运算,其结果为神经网络的最终训练结果。
上述的计算过程循环进行,直到完成给定的训练次数或达到设定的误差终止值。
二、BP神经网络在农业工程领域中的应用
1.在农业生产管理与农业决策中的应用
农业生产管理受地域、环境、季节等影响较大,用产生式规则完整描述实际系统,可能会因组合规则过多而无法实现。神经网络的一个显著的优点就是其具有较强的自学习、自适应、自组织能力,通过对有代表性的样本的学习可以掌握学习对象的内在规律,从而可以在一定程度上克服上述信息量大的问题。神经网络在农业生产管理方面可用于农作物生长过程中对农作物生长需求进行预测,从而通过对养分、水分、温度、以及PH值的优化控制达到最优的生长状况。采用神经网络预测算法的主要思想可描述为:(1)收集一定规模的样本集,采用BP算法进行训练,使网络收敛到预定的精度;(2)将网络权值矩阵保存到一存储介质中,例如文本文件或数据库中;(3)对于待预测数据的輸入部分,从存储介质中读出网络连接权值矩阵,然后通过BP神经网络的前向传播算法计算网络输出,输出结果既是预测出来的数值向量。如霍再林等针对油葵不同阶段的相对土壤含盐浓度对其产量的影响有一定的规律的现象,以油葵的6个成长阶段的土壤溶液含盐的相对浓度为输入样本,相对产量为输出样本,通过比较发现,训练后的神经网络能较好预测油葵产量,采用此方法可补充传统模型的不足,为今后进一步的研究开辟了新路。
在农业决策方面,主要将农业专家面对各种问题时所采取的方法的经验,作为神经网络的学习样本,从而采用神经网络建立的专家系统将从一定程度上弥补了传统方法的不足,将农业决策智能化。如何勇、宋海燕针对传统专家系统自学习能力差的缺点,利用神经网络可自我训练的优点,将神经网络引入专家系统中。将小麦缺素时的田间宏观表现,叶部、茎部、果实症状及引起缺素的原因这五个方面的可信度值作为神经网络的输入量,将农业专家诊断的结论作为输出量,将这些数据作为神经网络的训练数据。实际应用表明此系统自动诊断的结果与专家现场诊断的结果基本一致,从而采用该系统能够取代专家,实现作物的自我诊断,为农业管理方面提供了极大的帮助。如马成林等针对于传统施肥决策方法中非线性关系描述不足的问题,基于数据包分析和BP神经网络,建立了施肥决策模型,应用表明,在有限的范围内,模型预测结果较为合理,可以反映玉米的需肥特性。刘铖等人提出采用神经网络应用在农业生产决策中,以莜麦播种方式决策为例,通过对产生式规则的分析导出神经网络输入、输出单元数,并通过多次试验确定隐层单元数,用MATLAB方针结果表明,采用神经网络作为农业生产决策的方法,取得了较好的效果。谭宗琨提出将基于互联网环境下的神经网络应用在玉米智能农业专家系统中,根据农作物发育进程分成若干个发育期,分别对各个发育期建立管理模型,依照作物各发育期进程时间间隔,由计算机系统自动选取相应的模型进行决策。应用分析的结果表明采用神经网络的玉米智能专家系统已初步接近农业生产的实际。
2.在农产品外观分析和品质评判
农产品的外观,如形状、大小、色泽等在生产过程中是不断变化的,并且受人为和自然等复杂因素的影响较大。农产品的外观直接影响到农产品的销售,研究出农作物外观受人为和自然的影响因素,通过神经网络进行生产预测,可解决农产品由于不良外观而造成的损失。如Murase 等针对西红柿表皮破裂的现象,西红柿表皮应力的增长与西红柿果肉靠近表皮部分水分的增加有关,当表皮应力超过最大表皮强度时,将导致表皮破裂。用人工神经网络系统,预测在环境温度下的表皮应力,可通过控制环境变量来减少西红柿表皮破裂所造成的损失。
在农业科研和生产中,农产品的品质评判大多是依赖于对农产品外观的辨识。例如对果形尺寸和颜色等外观判别果实的成熟度,作物与杂草的辨别,种子的外观质量检测。由于农业环境的复杂性和生物的多样性,农产品的外观不具有较确定的规律性和可描述性,单一采用图像处理技术辨识农产品的外观时不宜过多采取失真处理和变换,否则则增加图像处理的复杂性,特征判别也相对困难。人工神经网络由于其具有自学习、自组织的能力,比较适宜解决农业领域中许多难以用常规数学方法表达的复杂问题,与图像处理技术相结合后,可根据图像特征进行选择性判别。采用此方法可以部分替代人工识别的工作,提高了生产效率,也有利于实现农业现代化。如Liao等将玉米籽粒图像用34个特征参数作为神经网络的输入变量,将输出的种粒形态分为5类,经过学习的神经网络对完整籽粒分类的准确率达到93%,破籽粒分类的准确率达91%。
3.蔬菜、果实、谷物等农产品的分级和鉴定
在农业生产中,蔬菜、果实、谷物等农产品的分级和鉴定是通过对农产品外观的辨识进行的。传统的农产品外观的辨识方法费时费力、预测可靠度很低,而且多采用人工操作,评价受到操作者主观因素的影响,评判的精度难以保证。利用人工神经网络技术结合图像处理技术可部分代替以往这些主要依靠人工识别的工作,从而大大提高生产效率,实现农业生产与管理的自动化和智能化。
利用BP神经网络技术对农产品果形尺寸和颜色等外观评判,目前国内外已有不少成果用于实际生产中。何东健等以计算机视觉技术进行果实颜色自动分级为目的,研究了用人工神经网络进行颜色分级的方法。分别用120个着色不同的红星和红富士苹果作为训练样本集对网络进行离线训练。两个品种的苹果先由人工依据标准按着色度分成4级,对每一个品种分别求出7个模式特征值作为BP网络的输入,用训练好的神经网络进行分级。结果表明红富士和红星果实的平均分级一致率分别为94.2%和94.4%。刘禾等用对称特征、长宽特征、宽度特征、比值特征等一系列特征值来描述果形。采用BP网络与人工智能相结合,建立果形判别人工神经网络专家系统。试验水果品种为富士和国光。试验表明系统对富士学习率为80%,对非学习样本的富士苹果的果形判别推确率为75%,系统对国光学习率为89%,对非学习样本的国光苹果果形判别系统的难确率为82%。
三、未来的发展方向
人工神经网络的信息处理技术现已在农业工程领域内得到了迅速的应用,采用人工神经网络算法的农业系统能够从一定程度上改善控制效果,但此技术在农业范围内还不够成熟,有待于进一步的研究。今后科研的方向大体上可以从以下几方面着手:
1.人工神经网络算法的改进
人工神经网络算法由于本身具有一定的缺点,从而采用人工神经网络的算法的信息处理技术在应用过程中具有一定的局限性。在今后的研究中,可以從人工神经网络方向着手,改进人工神经网络算法,从而实现其在农业领域内更好的应用。近年来随着模糊算法、蚁群算法等算法的相继出现,将神经网络与其他算法结合在一起已经成为了研究的热门话题,也是未来算法研究的主要方向之一。
2.应用领域的扩展
人工神经网络算法在农业工程方面现已得到了迅速的发展,扩展其在农业工程领域的应用范围是未来的一个主要研究方向。人工神经网络由于其具有自学习能力,可对农业系统的非线形特性进行较好的描述,采用人工神经网络可解决传统方法的不足,从而实现农业现代化。如何将神经网络较好地引入到农业系统,解决农业工程中的部分问题,已是今后农业科研中的一个方向。
四、结束语
神经网络作为一种人工智能范畴的计算方法,具有良好的自学习与数学计算的能力,可通过计算机程序进行模拟运算,现已广泛用于模式识别、管理决策等方面。随着计算机硬件和软件的不断发展与农业工程方面的研究的不断深入,神经网络将在农业管理、农业决策、农作物外观分类、品质评判等方面充分发挥其自学习能力强,计算能力强的优势,通过对样本数据的学习,神经网络可较好地解决农作物生长过程中的作物分类、预测等非线形的问题。在农业工程领域内,神经网络拥有广阔的科研前景。
参考文献:
[1]余英林李海洲:神经网络与信号分析[M]. 广州: 华南理工大学出版社,1996:45
[2]霍再林史海滨孔东等: 基于人工神经网络的作物水—盐响应初步研究[J].内蒙古农业大学学报,2003,24(3):66~70
[3]何勇宋海燕:基于神经网络的作物营养诊断专家系统[J]. 农业工程学报,2005,21(1):110~113
[4]马成林吴才聪张书慧等:基与数据包络分析和人工神经网络的变量施肥决策方法研究[J].农业工程学报,2006,20(2):152~155
[5]刘铖杨盘洪: 莜麦播种方式决策的BP神经网络模型[J]. 太原理工大学学报,2006,37(5):119~121
[6]谭宗琨: BP人工神经网络在玉米智能农业专家系统中的应用[J].农业网络信息,2004(10):9~1
[7]Liao K,Li Z,Reid J F,et al.Knoledge-based color discrimination of corn kernels[J].ASAE paper[C].92~3579
[8]何东健杨青薛少平等: 用人工神经网络进行果实颜色分级技术研究[J].西北农业大学学报,1998,26(6):109~112
本文中所涉及到的图表、注解、公式等内容请以PDF格式阅读原文。
[关键词]BP神经网络农业工程农业管理农业决策
一、引言
采用神经网络算法的信息处理技术,以其较强的计算性和学习性,现如今已经在各工程领域内得到了广泛应用。随着科技不断的发展和研究的不断深入,农业系统中采用的传统分析和管理的方法已经不能满足农业工程领域快速发展的需要。在农业系统中采用神经网络技术可在一定程度上可弥补传统方法的不足,现已成为实现农业现代化的一个重要途径。神经网络现已在农业生产的各个环节得到广泛的应用,从作物营养控制、作物疾病诊断、产量预测到产品分级,显示了巨大的潜力,并正以很快的速度与生产实际相结合。目前应用比较多的BP神经网络,可通过学习以任意精度逼近任何连续映射,在农业生产与科研中展示出了广阔的应用前景。
BP人工神经网络方法。人工神经网络是对生物神经网络的简化和模拟的一种信息处理系统,具有很强的信息存贮能力和计算能力,属于一种非经典的数值算法。通常可分为前向神经网络、反馈神经网络和自组织映射神经网络。BP神经网络(Backpropugation Neura1 Network)是一种单向传播的多层前向神经网络,可通过连续不断的在相对于误差函数斜率下降的方向上计算网络权值以及偏差的变化而逐渐逼近目标值,每一次数字和偏差的变化都与网络误差的影响成正比,并以反向传播的方式传递到每一层,从而实现了神经网络的学习过程。BP人工神经网络的结构如图所示,BP神经网络可分为输入层、中间层(隐含层)和输出层,其中输入和输出都只有一层,中间层可有一层或多层。同层的网络结点之间没有连接。每个网络结点表示一个神经元,其传递函数通常采用Sigmoid型函数。BP神经网络相当于从输入到输出的高度非线性映射,对于样本输入和输出,可以认为存在某一映射函数g,使得y0=g(xi),i=1,2,3,…,m,其中m为样本数,xi为输入样本,yo为输出结果。
BP神经网络的一个显著优点就是其可进行自学习,能够通过训练得到预期的效果。其学习过程由正向传播和反向传播组成,神经网络的输入值经过非线性变换从输入层经隐含层神经元的逐层处理传向输出层,此为正向传播过程。每一层神经元的状态将影响到下一层神经元状态。如果输出层得到的数值与期望输出有一定的偏差,则转入反向传播过程。神经网络通过对输入值和希望的输出值(教师值)进行比较,根据两者之间的差的函数来调整神经网络的各层的连接权值和各个神经元的阈值,最终使误差函数达到最小。其调整的过程是由后向前进行的,称为误差反向传播BP算法。具体学习过程如下:
(1)随机给各个权值赋一个初始权值,要求各个权值互不相等,且均为较小的非零数。
(2)输入样本集中每一个样本值,确定相应的网络实际输出值。
(3)计算实际的输出值与相应的样本集中的相应输出值的差值。
(4)按极小误差方式调整权值矩阵。
(5)判断网络误差是否小于训练前人为设定的一个较小的值,若小于,则跳出运算,此时的结果为神经网络的最终训练结果;若大于,则继续计算。
(6)判断最大迭代次数是否大于预先设定的数,若小于,返回(2);若大于,则中止运算,其结果为神经网络的最终训练结果。
上述的计算过程循环进行,直到完成给定的训练次数或达到设定的误差终止值。
二、BP神经网络在农业工程领域中的应用
1.在农业生产管理与农业决策中的应用
农业生产管理受地域、环境、季节等影响较大,用产生式规则完整描述实际系统,可能会因组合规则过多而无法实现。神经网络的一个显著的优点就是其具有较强的自学习、自适应、自组织能力,通过对有代表性的样本的学习可以掌握学习对象的内在规律,从而可以在一定程度上克服上述信息量大的问题。神经网络在农业生产管理方面可用于农作物生长过程中对农作物生长需求进行预测,从而通过对养分、水分、温度、以及PH值的优化控制达到最优的生长状况。采用神经网络预测算法的主要思想可描述为:(1)收集一定规模的样本集,采用BP算法进行训练,使网络收敛到预定的精度;(2)将网络权值矩阵保存到一存储介质中,例如文本文件或数据库中;(3)对于待预测数据的輸入部分,从存储介质中读出网络连接权值矩阵,然后通过BP神经网络的前向传播算法计算网络输出,输出结果既是预测出来的数值向量。如霍再林等针对油葵不同阶段的相对土壤含盐浓度对其产量的影响有一定的规律的现象,以油葵的6个成长阶段的土壤溶液含盐的相对浓度为输入样本,相对产量为输出样本,通过比较发现,训练后的神经网络能较好预测油葵产量,采用此方法可补充传统模型的不足,为今后进一步的研究开辟了新路。
在农业决策方面,主要将农业专家面对各种问题时所采取的方法的经验,作为神经网络的学习样本,从而采用神经网络建立的专家系统将从一定程度上弥补了传统方法的不足,将农业决策智能化。如何勇、宋海燕针对传统专家系统自学习能力差的缺点,利用神经网络可自我训练的优点,将神经网络引入专家系统中。将小麦缺素时的田间宏观表现,叶部、茎部、果实症状及引起缺素的原因这五个方面的可信度值作为神经网络的输入量,将农业专家诊断的结论作为输出量,将这些数据作为神经网络的训练数据。实际应用表明此系统自动诊断的结果与专家现场诊断的结果基本一致,从而采用该系统能够取代专家,实现作物的自我诊断,为农业管理方面提供了极大的帮助。如马成林等针对于传统施肥决策方法中非线性关系描述不足的问题,基于数据包分析和BP神经网络,建立了施肥决策模型,应用表明,在有限的范围内,模型预测结果较为合理,可以反映玉米的需肥特性。刘铖等人提出采用神经网络应用在农业生产决策中,以莜麦播种方式决策为例,通过对产生式规则的分析导出神经网络输入、输出单元数,并通过多次试验确定隐层单元数,用MATLAB方针结果表明,采用神经网络作为农业生产决策的方法,取得了较好的效果。谭宗琨提出将基于互联网环境下的神经网络应用在玉米智能农业专家系统中,根据农作物发育进程分成若干个发育期,分别对各个发育期建立管理模型,依照作物各发育期进程时间间隔,由计算机系统自动选取相应的模型进行决策。应用分析的结果表明采用神经网络的玉米智能专家系统已初步接近农业生产的实际。
2.在农产品外观分析和品质评判
农产品的外观,如形状、大小、色泽等在生产过程中是不断变化的,并且受人为和自然等复杂因素的影响较大。农产品的外观直接影响到农产品的销售,研究出农作物外观受人为和自然的影响因素,通过神经网络进行生产预测,可解决农产品由于不良外观而造成的损失。如Murase 等针对西红柿表皮破裂的现象,西红柿表皮应力的增长与西红柿果肉靠近表皮部分水分的增加有关,当表皮应力超过最大表皮强度时,将导致表皮破裂。用人工神经网络系统,预测在环境温度下的表皮应力,可通过控制环境变量来减少西红柿表皮破裂所造成的损失。
在农业科研和生产中,农产品的品质评判大多是依赖于对农产品外观的辨识。例如对果形尺寸和颜色等外观判别果实的成熟度,作物与杂草的辨别,种子的外观质量检测。由于农业环境的复杂性和生物的多样性,农产品的外观不具有较确定的规律性和可描述性,单一采用图像处理技术辨识农产品的外观时不宜过多采取失真处理和变换,否则则增加图像处理的复杂性,特征判别也相对困难。人工神经网络由于其具有自学习、自组织的能力,比较适宜解决农业领域中许多难以用常规数学方法表达的复杂问题,与图像处理技术相结合后,可根据图像特征进行选择性判别。采用此方法可以部分替代人工识别的工作,提高了生产效率,也有利于实现农业现代化。如Liao等将玉米籽粒图像用34个特征参数作为神经网络的输入变量,将输出的种粒形态分为5类,经过学习的神经网络对完整籽粒分类的准确率达到93%,破籽粒分类的准确率达91%。
3.蔬菜、果实、谷物等农产品的分级和鉴定
在农业生产中,蔬菜、果实、谷物等农产品的分级和鉴定是通过对农产品外观的辨识进行的。传统的农产品外观的辨识方法费时费力、预测可靠度很低,而且多采用人工操作,评价受到操作者主观因素的影响,评判的精度难以保证。利用人工神经网络技术结合图像处理技术可部分代替以往这些主要依靠人工识别的工作,从而大大提高生产效率,实现农业生产与管理的自动化和智能化。
利用BP神经网络技术对农产品果形尺寸和颜色等外观评判,目前国内外已有不少成果用于实际生产中。何东健等以计算机视觉技术进行果实颜色自动分级为目的,研究了用人工神经网络进行颜色分级的方法。分别用120个着色不同的红星和红富士苹果作为训练样本集对网络进行离线训练。两个品种的苹果先由人工依据标准按着色度分成4级,对每一个品种分别求出7个模式特征值作为BP网络的输入,用训练好的神经网络进行分级。结果表明红富士和红星果实的平均分级一致率分别为94.2%和94.4%。刘禾等用对称特征、长宽特征、宽度特征、比值特征等一系列特征值来描述果形。采用BP网络与人工智能相结合,建立果形判别人工神经网络专家系统。试验水果品种为富士和国光。试验表明系统对富士学习率为80%,对非学习样本的富士苹果的果形判别推确率为75%,系统对国光学习率为89%,对非学习样本的国光苹果果形判别系统的难确率为82%。
三、未来的发展方向
人工神经网络的信息处理技术现已在农业工程领域内得到了迅速的应用,采用人工神经网络算法的农业系统能够从一定程度上改善控制效果,但此技术在农业范围内还不够成熟,有待于进一步的研究。今后科研的方向大体上可以从以下几方面着手:
1.人工神经网络算法的改进
人工神经网络算法由于本身具有一定的缺点,从而采用人工神经网络的算法的信息处理技术在应用过程中具有一定的局限性。在今后的研究中,可以從人工神经网络方向着手,改进人工神经网络算法,从而实现其在农业领域内更好的应用。近年来随着模糊算法、蚁群算法等算法的相继出现,将神经网络与其他算法结合在一起已经成为了研究的热门话题,也是未来算法研究的主要方向之一。
2.应用领域的扩展
人工神经网络算法在农业工程方面现已得到了迅速的发展,扩展其在农业工程领域的应用范围是未来的一个主要研究方向。人工神经网络由于其具有自学习能力,可对农业系统的非线形特性进行较好的描述,采用人工神经网络可解决传统方法的不足,从而实现农业现代化。如何将神经网络较好地引入到农业系统,解决农业工程中的部分问题,已是今后农业科研中的一个方向。
四、结束语
神经网络作为一种人工智能范畴的计算方法,具有良好的自学习与数学计算的能力,可通过计算机程序进行模拟运算,现已广泛用于模式识别、管理决策等方面。随着计算机硬件和软件的不断发展与农业工程方面的研究的不断深入,神经网络将在农业管理、农业决策、农作物外观分类、品质评判等方面充分发挥其自学习能力强,计算能力强的优势,通过对样本数据的学习,神经网络可较好地解决农作物生长过程中的作物分类、预测等非线形的问题。在农业工程领域内,神经网络拥有广阔的科研前景。
参考文献:
[1]余英林李海洲:神经网络与信号分析[M]. 广州: 华南理工大学出版社,1996:45
[2]霍再林史海滨孔东等: 基于人工神经网络的作物水—盐响应初步研究[J].内蒙古农业大学学报,2003,24(3):66~70
[3]何勇宋海燕:基于神经网络的作物营养诊断专家系统[J]. 农业工程学报,2005,21(1):110~113
[4]马成林吴才聪张书慧等:基与数据包络分析和人工神经网络的变量施肥决策方法研究[J].农业工程学报,2006,20(2):152~155
[5]刘铖杨盘洪: 莜麦播种方式决策的BP神经网络模型[J]. 太原理工大学学报,2006,37(5):119~121
[6]谭宗琨: BP人工神经网络在玉米智能农业专家系统中的应用[J].农业网络信息,2004(10):9~1
[7]Liao K,Li Z,Reid J F,et al.Knoledge-based color discrimination of corn kernels[J].ASAE paper[C].92~3579
[8]何东健杨青薛少平等: 用人工神经网络进行果实颜色分级技术研究[J].西北农业大学学报,1998,26(6):109~112
本文中所涉及到的图表、注解、公式等内容请以PDF格式阅读原文。